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a b s t r a c t

In multi-view and multi-label learning, each example can be represented by multiple data view
features and annotated with a set of discrete non-exclusive labels. Missing label learning is an
important branch of multi-label learning, which can handle incomplete labels with annotations.
Previous work on multi-label learning with missing labels mainly considered data in a single view
representation. Based on intuitive understanding, we propose a Two-step Multi-view and Multi-label
Missing Label learning optimization solution(TM3L). The first step is to solve the multi-view learning
problem by finding the data representation of the common low-dimensional space of all views through
subspace learning. While fully considering the complementary information between multiple views,
the different degrees of contribution combined with different views are weighted differently. The
second step is to solve the multi-label missing label learning problem by using the label matrix
completion method in combination with the kernel extreme learning machine classifier. The kernel
extreme learning machine can effectively enhance the robustness of the algorithm to missing labels.
The experimental results and analysis on multiple benchmark multi-view and multi-label data sets
verify the effectiveness of TM3L compared with the state-of-the-art solutions.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of Internet technology and dig-
tal devices in recent years, web users can easily upload their
ultimedia data, such as photos and videos [1]. This data is
enerated in large quantities daily and most of the data is unla-
eled. The annotation of diverse information is very helpful for
ata management and search, which has drawn an increasing
esearch interest. Similarly, as data collection and feature ex-
raction methods become more and more diversified. The form
f a single view description problem cannot effectively solve
he problem of diverse data. In the real world, there are often
ultiple views descriptions of instance. For example, in image
nalysis, images of natural scenes can usually be represented
y their visual features (such as RGB and HSV color histograms,
lobe feature(Gist), and scale-invariant feature transform(SIFT)),
nd they can also be annotated with labels. In video analysis,
ideo data has both images, audio, and text [2,3]. At present, it
s difficult to describe something in detail from a single view.
ulti-view learning has gradually become a hot research content
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and has attracted widespread attention in machine learning and
various application fields [4–7].

In addition, multi-label learning is an essential framework for
dealing with a single example and multiple labels simultane-
ously [8,9]. One of its core challenges is how to use the correlation
between class labels to reconstruct an effective learning model
that can predict the set of unknown instance labels. According to
the types of label correlations used, the existing multi-label meth-
ods can generally be divided into three categories. First-order
strategies: each tag has its unique attributes, and the relationship
between tags is ignored. But the results are often suboptimal,
for example, BR [10] and ML-kNN [11]; Second-order strategy:
consider the correlation between paired labels, such as CLR [12]
and MLRL [13], and the real-world application label relationship
is often more complicated; High-order strategy: mining the cor-
relation between all category labels, and can better reflect the
multi-faceted relationship between real-world objects, such as
MLSF [14] and MLMF [15]. To solve the more complex classi-
fication problem of natural data, a multi-view and multi-label
learning framework is proposed.

The existing multi-label learning perspective-based multi-
view and multi-label learning algorithm methods can be intu-
itively divided into two simple ways [16]. The first category:
directly connecting multi-view data into single-view data, is
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olved using traditional multi-label learning methods. The prob-
em is that it will ignore the unique physical interpretation
etween features, and it will cause over-fitting because of too
igh dimensions. The second category: a multi-label classifier is
onstructed for each multi-view data, and the results of each
iew are combined to obtain the final predictive label [17]. The
omplementarity between different views may be ignored. The
ost common way is to find a method to deal with multi-
iew and multi-label problems from multi-view learning models,
hich can be divided into the following categories:

1. Multi-view and multi-label methods combined with Co-
training [18]: Maximize consensus by alternating training
on two different views of unlabeled data.

2. Multi-view and multi-label method combined with multi-
kernel learning [19]: The way to improve learning perfor-
mance is to take advantage of the kernels that naturally
correspond to each other in different views, and combine
the kernels either linear or non-linear way.

3. Multi-view and multi-label method combined with sub-
space learning [1,2,20–22]: By assuming that the input
view is generated from this potential subspace, observe the
potential subspace shared by multiple views.

Furthermore, in previous multi-label learning studies,
esearchers previously assumed that all class labels for each
ample were known as training data. In practical applications,
he acquisition of class labels basically depends on manual an-
otation, which requires a lot of human and material resources.
anual annotation is difficult to fully annotate all labels, usually
nly partial labels can be observed. Annotating unlabeled samples
irectly not only wastes a lot of human resources, more important
ut also requires expert experience. Therefore, improving the
erformance of the classifier with a small number of labeled
amples or defects is one of the main problems facing multi-view
nd multi-label learning. Based on the above studies, considering
hat subspace learning can solve multi-view problems well, and
ombined with the advantages of existing multi-label learning.
e propose a separate two-step algorithm to solve the prob-

em of missing multi-view multi-label data. A method similar
o lrMMC [20] uses a two-step separate learning scheme. The
irst step uses multi-view subspace learning to extract multi-
iew shared subspace features. In the second step, a multi-label
lassification method of kernel extreme learning machine with
abel correlation is added to predict the unknown instance label
et. The contributions of the methods in this paper are:

• A separate two-step solution is proposed to solve the prob-
lem of the missing label under multi-view and multi-label.
Learning the shared subspace and subsequent label predic-
tion in two separate steps. First, it can get shared subspaces
information from different views. Secondly, in the multi-
label learning of the kernel extreme learning machine, the
correlation between labels is added to solve the problem of
the missing label.
• In the process of subspace learning mapping, the Hilbert–

Schmidt Independence Criterion is used to maintain the
consistency of multi-view latent space further. At the same
time, we consider the different contributions of different
views to weight each view.
• TM3L is a two-step iterative optimization model that com-

bines the advantages of multi-view subspace learning and
multi-label learning. A large number of empirical results on
the benchmark data set prove that TM3L and some related
and competitive methods (such as LSML [16], ICM2L [21],
iMvWL [23] and WcML [24]) have certain advantages.
2

The remainder of this paper is organized as follows. Section 2
reviews previous work on multi-view and multi-label learning,
and missing label learning. Section 3 presents the details of the
proposed TM3L method. Comparative experimental results and
analysis are shown in Section 4. Finally, we conclude the paper
in Section 5.

2. Related work

2.1. Multi-view and multi-label learning

Due to the widespread existence of multi-view and multi-label
data, multi-view and multi-label learning has become an active
research area in many practical applications [1,25,26].

In the existing multi-view learning methods, there are already
a large number of strategies for acquiring the internal feature
structure of multiple views and transforming feature expressions.
For examples, MDBP [27] projects multi-view data into a shared
subspace through a view-specific bilinear projection, which re-
tains the structure of a multivariate time series and incorpo-
rates supervised regularization learning discriminative features;
MLRA [28] is a multi-view low-rank analysis method. It first
obtains the internal structure of multi-view data by performing
cross-view low-rank analysis, and secondly, estimates the outliers
of each test sample to identify outliers.

Besides, there have been some attempts to analyze multi-view
data with multi-view and multi-label learning methods. Such
as Xing et al. [29] proposed a predictive reliability measure to
select samples for sharing label information with other views in
a co-training manner. LSA-MML [22] solves the multi-view and
multi-label learning problem based on the premise that there is
a common representation between different views and obtains
undiscovered latent semantics through alignment between dif-
ferent views in the kernel space. CSMSC [30] is a multi-view
subspace learning method that can jointly extract the consistency
and specificity of heterogeneous features for subspace represen-
tation learning. Liu et al. [20] proposed a multi-view framework
lrMMC based on matrix factorization. This framework first seeks
a shared representation of multiple views and then performs
classification based on matrices on the shared feature space.
Furthermore, Zhu et al. [31] map each view to a shared space
to eliminate noise and redundancy, while maintaining the sparse
and manifold structure of the image data, respectively. The goal of
LSA-MML and MVLE [32] is to use the Hilbert–Schmidt Indepen-
dence Criterion during the mapping process to further maintain
consensus on the multi-view potential space. MSFS [33] captures
higher-level label concepts and the correlation among multiple
labels by decomposing label space information into reduced po-
tential label representations. Further, the visual similarity and
relationship of different views are used to construct multiple
local geometric structures. SIMM [2] jointly minimizes confusion
adversarial loss and multi-label loss to utilize shared information
from all views. SIMM shares subspace and view-specific infor-
mation extraction that are used together for model induction.
ICM2L [21] is an individual and commonality-based approach for
explicitly exploring the personality and commonality information
of multi-label and multi-view data in a unified model.

It can be seen that subspace learning(SL) has gradually become
one of the essential methods to solve the multi-view and multi-
label learning problem. SL not only effectively solves the problem
of dimensional disasters in multi-view learning, but also can mine

common and private information from different perspectives.
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.2. Missing label learning

In practical applications, the way to obtain labels is often
anually annotated, which may result in that when the label set

s large, we can only observe a subset of labels. Since the incom-
leteness of the label set has a significant impact on the effect
f multi-label learning, many scholars have proposed methods
o mitigate performance degradation. For example, learning the
abel matrix as a preprocessing step before multi-label learning
or classification can restore the integrity of the training data,
uch as [34–36]. The recovered label matrix may be suboptimal,
hich independently processes incomplete training data and pre-
icted invisible category labels. Besides, some work combines
abel matrix recovery and multi-label classifier construction for
oint learning. Usually, the number and location of lost labels are
nknown in advance. For example, ML-LEML [37] handles miss-
ng label classification and multi-label learning under a unified
ramework, simultaneously. ML-LEML assumes that the label sets
haring the same cluster are highly correlated with each other,
hile the label sets of different groups are loosely connected.
L-LEML uses low-rank and sparse attributes to estimate defec-

ive labels and extracts potential relationships between features
nd labels in a low-dimensional shared subspace. The MLMF
ethod realizes not only joint learning of independent binary
lassification but also considers joint learning of multi-label clas-
ification and label correlation. Glocal [38] solves the multi-label
earning problem of defective labels by modeling global and lo-
al label correlations, learning potential class label representa-
ions, and optimizing label manifold regularization. MLR-GL [39]
dds a low-rank structure to the predictions of all instances
rom the same label and adds the maximum separation struc-
ure to instances from different labels. ALSM [40] learns the
ntermediate feature space of labeled and unlabeled training sam-
les through low-rank matrix restoration and uses an adaptive
emi-supervised learning strategy to train a multi-label classifier.
SML performs joint learning of the recovery of the defective
abel set and label-specific features to achieve multi-label clas-
ification with missing labels. Another label recovery method
s Maxide [36], which uses two-sided information matrices to
ccelerate matrix completion. Maxide assumes that the target and
dge information matrices have the same potential information.
ased on these existing missing label algorithms, some scholars
ave applied it to multi-view and multi-label learning. McWL is a
ulti-view weak label learning method based on matrix comple-

ion, which can model multi-feature fusion and matrix-completed
rediction functions simultaneously. McWL describes the rela-
ionships between instances collected from different views by
raphs and then uses kernel object alignment techniques to com-
ine these graphs into a composite graph. iMvWL jointly solves
he problems of incomplete views and missing labels in multi-
iew and multi-label learning. iMvWL can learn predictive labels
nd share subspaces simultaneously from incomplete views of
eak labels, label correlations, and subspaces.
In multi-view and multi-label learning, the following chal-

enges are faced:

1. Most multi-view subspace learning transforms multi-view
learning problems into shared subspace learning problems.
How to make full and effective use of shared and private
information among views to improve the performance of
the algorithm becomes the key.

2. In multi-label learning, the correlation among labels is of-
ten considered and utilized. Current research has fully con-
firmed that applying tag correlation can significantly im-
prove the performance of multi-label classification learn-

ing. In the face of missing labels, how to effectively mine

3

the relationship among labels and improve the classifica-
tion performance of the algorithm significantly is a key
issue for missing label learning.

Because of these problems, this paper proposes a two-step
multi-view subspace learning to perform a multi-label classifica-
tion of missing labels. Similar work has the lrMMC method and
CSMSC method, and both are a two-step solution. The difference
is that TM3L pays more attention to the ambiguity of private
space and the effectiveness of classification.

3. Proposed approach

The learning framework of our proposed method TM3L is
shown in Fig. 1. Our method framework is mainly composed of
three parts. The first part is to learn the data representation of
shared space and private space among multi-view. In the second
part, determine the contribution weights of different views. The
third part, multi-label classification learning under missing labels,
gives the classification results.

Let D =
{
Xv

1,X
v
2, . . . ,X

v
n

}m
v=1 ∈ Rdv×n, 1 ≤ v ≤ m, where n is

the number of samples in a data set andm is the number of views,
and dv is the sample dimension of the vth view. Xv

n represents
the feature space of the nth sample under the vth view. Y ∈
{0, 1}n×l indicates the label matrix, where Y ij = 1 indicates that
the ith sample has the jth label. Y ij = 0 indicates that the jth
label of the ith sample does not provide any information, and l
indicates the number of class labels. Our goal is to predict the
labels of unknown instances through feature space D and missing
label space Y of known examples.

3.1. Multi-label subspace learning model

min
Q v ,Z

1
mn

n∑
i=1

m∑
v=1

(Xv
i − Q vZ i

2
F +

mC
2
∥Z i∥

2
F

)
(1)

where Q v
∈ Rdv×r is the private information matrix correspond-

ing to the vth view; Z ∈ Rr×n represents a multi-view shared
information matrix, which encodes supplementary information
from different views; r is the low-order matrix dimension; C is
a non-negative constant, which is a trade-off between generating
errors and penalizing regular terms in private low-dimensional
spaces. ∥·∥F is denoted as Frobenius norm, and its simplicity and
wide application are the reasons why we use it.

Furthermore, to enhance the diversity of private subspaces
between different views, we approximate the quantification of
diversity based on the dependencies between different private
spaces. Considering that the smaller the correlation coefficient
between the data matrices, the greater their diversity relation-
ship, because the correlation between different private spaces
is lower. Furthermore, we added the following regular penalty
terms to punish the basic independence of different private
spaces:

min
Q v ,Z

1
mn

n∑
i=1

m∑
v=1

(Xv
i − Q vZ i

2
F +

mC
2
∥Z i∥

2
F

)
+

λ

m
Φ

({
Q v

}m
v=1

)
(2)

Various measurement methods can be used to assess the de-
pendencies between variables. Here we use the Hilbert–Schmidt
Independence Criterion (HSIC) [32,41] to constrain the consis-
tence across different views because it is simple and has a solid
theoretical foundation and the ability to measure linearity and
non-linearity between variables. HSIC calculates the square norm
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f the cross-covariance on Q v and Q h in Hilbert space to estimate
the correlation. The empirical HSIC does not need to calculate
the joint distribution of Q v and Q h explicitly. The HSIC in the
method in this paper can be regarded as a punishment for the
inconsistency of different views based on the basic similarity
diagram, which can be expressed as:

HSIC
(
Q v,Q h)

= (r − 1)−2tr
(
K vHK hH

)
(3)

where K v,K h,H ∈ Rr×r , K v and K h were used to measure
kernel-induced similarity between Q v and Q h, respectively. H =
δij − 1/r , δij = 1 if i = j, δij = 0 otherwise. In this paper, we use
the inner matrix product as: K v

= (Q v)
TQ v,∀v = {1, 2, . . . ,m}.

Then we maximize the overall HSIC of the v perspective matrices
to reduce the redundancy between them and specify Φ (Q v) as
follows:

Φ
({

Q v
}m

v=1

)
= −

m∑
v=1,v ̸=h

HSIC
(
Q v,Q h)

= −

m∑
v=1,v ̸=h

(r − 1)−2tr
(
Q vHK hH

(
Q h)T)

=

m∑
v=1

tr
(
Q vK̃

v
(Q v)

T
)

(4)

where K̃
v
= −(r − 1)−2

∑m
h=1,h̸=v HK hH .

In addition, we also try to consider the problem from the
perspective that all data views may be useful for multi-label
learning tasks, but with different contributions. We try to learn
the view weights of all views, where θv represents the degree of
contribution of the vth data view. Then express the optimization
problem as:

min
Q v ,Z,θv

1
mn

n∑
i=1

m∑
v=1

θv

(Xv
i − Q vZ i

2
F +

mC
2
∥Z i∥

2
F

)
+

λ

m
tr

(
Q vK̃

v
(Q v)

T
)
+

α

2n
∥θ∥22

.t.θv
≥ 0,

m∑
v=1

θv
= 1

(5)
t

4

3.2. Missing label multi-label learning

In this section, we model the shared subspace Z and the label
space Y to predict the label set of unknown samples. Effective
se of label correlation information can undoubtedly complement
he missing information in the original label space [42]. We use
he label correlations among the missing labels to estimate the
ikelihood score, which can be expressed as:

in
S,W

1
2

ZTWS − Y
2
F (6)

Generally, label correlation matrix S is estimated by the known
label matrix Y , but in the problem of missing labels, we cannot
directly obtain the label correlation matrix through prior knowl-
edge. Besides, because the labeled samples are not sufficient, we
advocate learning it using the features of the training data and
the known labels [9,42]. Therefore, we need to obtain S through
learning.

Furthermore, we need to consider such a widespread situation
where local characteristics [43] similarity among labels, so the
label correlations matrix has a low-rank trend. For this reason,
many scholars [38,44] solve this problem by assuming that the
label correlation matrix has a local structure and set S as a low-
rank matrix. In other words, there are multiple label subsets in
a label set, and these label subsets have complex correlations
and are closely related to each other and are independent of the
remaining label subsets. This local structure in practical applica-
tions usually means that S is a low-rank matrix structure [20,22,
23]. To obtain the correlation of local labels, we add a constraint
of the low-rank matrix on S . We rewrite Eq. (6) to make it more
suitable for missing label problems:

min
S,W

1
2

ZTWS − Y
2
F + βrank (S) (7)

where β is a trade-off parameter that balances the relative im-
portance of low-rank constraints to matrix S . By adding sorting
terms, our model can obtain local label correlations between de-
fect signatures, making it more suitable for practical applications.
It is worth noting that the work in lrMMC assumes that the asso-
ciation among labels is also low-rank, but the usage is different.
lrMMC multiplies the low-rank label correlation matrix with Y to
omplete the missing labels. Similarly, LSML performs the same
peration, but LSML does not consider local label correlation.
nstead, we multiply the low-rank label correlation matrix with
he predicted likelihood label vector, which is similar to iMvWL.
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MvWL considers that the estimated value of label correlations
ay not necessarily be reliable in practice. Therefore, using the

ow-rank correlation matrix to multiply the predicted likelihood
abel vector is less affected by the method of multiplying the
abel matrix and the label correlation matrix. The low-rank matrix
inimization problem is an NP-hard problem. In this paper, the
uclear norm ∥·∥* is used as a convex approximation of the rank

function. We rewrite Eq. (7) as:

min
S,W

1
2

ZTWS − Y
2
F + β∥S∥∗ (8)

In summary, we decompose the multi-view and multi-label
issing label problem into a two-step learning problem for op-

imal solution. This two-step learning method can well combine
he advantages of the two learning frameworks. Next, we need to
olve Eq. (5) and Eq. (8) separately.

.3. Optimized solution for the first step

First, we consider the problem of optimizing Eq. (5). The objec-
ive function in Eq. (5) involves Q , Z , and θ. In general, we use an
terative optimization technique to optimize these three param-
ters separately. This technique optimizes the objective function
y iteratively solving a variable while fixing other variables, and
he entire process is performed alternately.

(1) Update Q With Fix Z and θ. Eq. (5) is a convex optimization
roblem, and all views are considered to be equally relevant
uring initialization. Our optimization goal can be rewritten as:

(Q v) = min
Z

1
mn

m∑
v=1

(Xv
− Q vZ

2
F

)
+

λ

m
tr

(
Q vK̃

v
(Q v)

T
)

(9)

For each view v, we obtain the following equation by taking
the derivative of Eq. (9) for Q v:

∂ f (Q v)

∂ (Q v)
=

1
mn

m∑
v=1

θv
(
Q vZZT

− XZT)
+

λ

m
Q vK̃

v
(10)

Using the Karush–Kuhn–Tucker(KKT) condition [45], we can de-
rive the following updating rule:

(Q v)ij ← (Q v)ij

∑m
v=1 θvXZT∑m

v=1 θvQ vZZT
+ nλQ vK̃

v (11)

Besides, to avoid the value of Z can be arbitrarily large, we
normalize the value of Q v by Q v

∥Q v∥F
to prevent the appearance of

rivial solutions.
(2) Update Z With Fix Q and θ. We obtain the following

quation by taking the derivative of Eq. (5) for Z to zero:

CmI + Q TQ
)
Z − Q TX = 0 (12)

According to the closed-form solution of Eq. (12), the update
ule of the shared subspace Z can be expressed as:

=
(
CmI + Q TQ

)−1
× Q TX (13)

(3) Update θ With Fix Q and Z . When Z and Q are fixed, the
Eq. (5) optimization target can be rewritten as:

min
θv

1
mn

n∑
i=1

m∑
v=1

θv

(Xv
i − Q vZ i

2
F +

mC
2
∥Z i∥

2
F

)
+

α

2n
∥θ∥22

.t.θv
≥ 0,

m∑
v=1

θv
= 1

(14)

Coordinate descent method is used to update θv . Especially, in
ach iteration, only two elements θ and θ are selected for update,
i j

5

hile the other elements are fixed. By using the Lagrangian
ultiplier method for Eq. (14) and considering it as a constraint,
is updated by the following rules:

θ∗i = 0, θ∗j = θi + θj, if λm
(
θi + θj

)
+

(
uj − ui

)
≤ 0,

θ∗j = 0, θ∗i = θi + θj, if λm
(
θi + θj

)
+

(
ui − uj

)
≤ 0,

θ∗i =
λm(θi+θj)+(uj−ui)

2λm , θ∗j = θi + θj − θ∗i ,

otherwise

(15)

where u = [u1, . . . , um]T, with each ui =
X (i)
− Q (i)∗Z∗

2
F +

mC
2

Z∗2
F .

The first step learning process of the TM3L method is outlined
in Algorithm 1. The stopping criterion of the algorithm is the dif-
ference between the target values of two consecutive steps. Since
each of the above subproblems is convex, the TM3L algorithm can
guarantee convergence to the local optimum of Eq. (5).

Algorithm 1: Multi-view subspace learning based on matrix
factorization

Input: Training data matrix:
{
Xv

}m
v=1;

Trade-off parameters: C , α, and λ;
Dimensionality of the shared subspace: r;
Minimum convergence error: ϵ;
Number of iterations: t;
Output: Shared subspace matrix: Z;

1 Randomly initialize Q v , Z , θv , and S;
2 for j = 1, 2, · · · , t do
3 for v = 1, 2, · · · ,m do
4 Update Q v by Eq. (11);
5 Normalize Q v;
6 Update θv by Eq. (15);
7 Update Z by Eq. (13);
8 if convergence then
9 break;

3.4. Optimized solution for the second step

Next, we consider the optimization Eq. (8) problem. The objec-
tive function in Eq. (8) involves W and S . Similarly, and we use
an alternating optimization technique.

(1) Update S With Fixed W . When W is fixed, Eq. (8) opti-
mized for S can be re-expressed as:

min
S

1
2

ZTWS − Y
2
F + β∥S∥∗ (16)

Eq. (16) can be regarded as a matrix completion problem, and
any algorithms have been proposed to solve this problem in the
ast few decades. In this paper, an efficient acceleration algorithm
axide [36], which only needs to estimate an l× l matrix, is used

to solve it. Similar methods such as iMvWL and lrMMC has been
adopted.

(2) Update W With Fixed S . When fixed S , Eq. (8) is a convex
optimization problem about the least-squares loss. The optimiza-
tion objective can be rewritten as:

min
W

1
2

ZTWS − Y
2
F (17)

Eq. (17) has many optimization methods. In this paper, we uti-
lize extreme learning machines, a single hidden layer feedforward
neural network (SLFN) algorithm to solve this problem. In the tra-
ditional neural network algorithm, more parameter settings are
needed initially, and the optimal local problem will appear when
solving the optimal solution, and the global optimal solution



D. Zhao, Q. Gao, Y. Lu et al. Applied Soft Computing Journal 102 (2021) 107120

c
i
n
w
o

m

w

a

g

w
n
l

W

w

s

p

Ŷ
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annot be obtained. The extreme learning machine (ELM) [46,47]
s an efficient optimization learning algorithm. Initially, only the
umber of nodes in the hidden layer needs to be set, and the
eights and deviations are randomly initialized to obtain the
ptimal global solution. Eq. (17) can be rewritten as:

in
W
∥HWS − Y∥2F (18)

here H represents the hidden layer output matrix:

H =

⎡⎢⎣ g
(
ZT
1

)
...

g
(
ZT
n

)
⎤⎥⎦ =

⎡⎢⎣ g1
(
ZT
1

)
· · · gl

(
ZT
1

)
...

...
...

g1
(
ZT
n

)
· · · gl

(
ZT
n

)
⎤⎥⎦ (19)

In Eq. (19), gi is the activation function which can be expressed
s:

i
(
Z j

)
= g

(
ZT
j · ωi + bi

)
(20)

here ωi is the input weight, and bi is the bias of the ith hidden
euron. From Eqs. (18) and (19), we know that the solution of
east-squares can be expressed as:ˆ = H

†
YS−1 (21)

here is H
†
the Moore–Penrose generalized inverse matrix of H .

.t.H
†

=

{ (
HTH

)−1HT ,HTH is a nonsingular matrix
H

(
HHT)−1,HHT is a nonsingular matrix

(22)

According to the Ridge Regression Theory, adding the regu-
larization term P to the diagonal of HHT or HTH can improve
the stability and generalization ability of the algorithm. The min-
imization goal of formula (18) is:

min
W

g (Z) = ∥W∥2 + P
n∑

i=1

ξi
2
;

s.t.ξi = Y i − g(Z i), i = 1, 2, . . . , n

(23)

According to the KKT condition (Karush–Kuhn–Tucker, KKT),
the hidden output weight W is expressed as:

W = HT(
I
P
+ HHT)−1YS−1 (24)

According to Eqs. (19) and (24), the final label set can be
redicted:

= HŴS (25)

In the traditional ELM method, the calculation result is easily
ffected by the random set value. To this end, a kernel matrix is
ntroduced to solve this problem:

ELM = HHT
: ΩELM(i,j) = K (zi, zj);

K (zi, zj) = exp(−γ
zi − zj

) (26)

Eq. (25) can be rewritten as:

Y = h(z)HT(
I
P
+ HHT)−1YS−1

=

⎡⎢⎣ K (z,z1)
...

K (z,zn)

⎤⎥⎦ (
I
P
+ΩELM)−1YS−1

(27)

The second step learning process of the TM3L method is outlined
in Algorithm 2.
6

Algorithm 2: Two-step Multi-view and Multi-label Learning
with Missing Label via Subspace Learning

Input: Training data matrix:
{
Xv

}m
v=1;

Training label data set: Y ;
Trade-off parameters: C , α, λ, β , P , and σ ;
Dimensionality of the shared subspace: r;
Output: Predicted likelihood score matrix: Ŷ ;

1 Randomly initialize Q v , Z , θv , and S;
2 while not convergence do
3 Obtain the shared subspace matrix Z through Algorithm

1;
4 Update S by Maxide;
5 Update W by Eq. (24);
6 Return the predicted likelihood score matrix by Eq. (27).

3.5. Complexity analysis

The time complexity of TM3L is mainly composed of the
following parts. The complexity of solving Q v and Z in the first
step areO

(
m

(
nr2 + r3 + ndmaxr

))
andO

(
dmaxr2 + r3 + ndmaxr

)
,

espectively. dmax represents the largest dimensionality of the
iews. The complexity of solving W and S in the second step are(
n3
+ n2l+ ndmaxl

)
and O (ql ln (l) ln (n)), respectively, where

is the rank of S . Sicne n ≫ l and n ≫ r the overall time
omplexity of TM3L is O (tmndmaxr), where t is the number of
terations to converge.

. Experimental content

.1. Comparison algorithm

1. ICM2L1: A method to explicitly explore the individuality
and commonality information of multi-view and multi-
label data in a unified model. According to the parameters
given in the paper, we recommend setting α = 0.6, β =

0.7, and k = 0.5dmin.
2. LSML2: The label-specific feature learning method for

multi-label missing label classification, which jointly learn-
ing classification tasks and recovery of label matrices. All
parameters of the proposed method are adjusted in{
10−5, 10−4, . . . , 103}.

3. McWL3: Multi-view weak label learning method based on
matrix completion. McWL performs multi-view integration
and MC-based classification optimization in a unified ob-
jective function. The parameters α, β and k are searched in{
2−5, 2−4, . . . , 25

}
, {0.1, 0.2, . . . , 0.5}, and {1, 2, . . . , 10},

respectively.
4. iMvWL4: Incomplete multi-view weak label learning. In

experiments, complete view information is available. The
parameters α and β are adjusted within

{
10−5, 10−4, . . . ,

100}.
5. TM3L: Two-step multi-view and multi-label missing label

learning via subspace learning. The parameters α, C , and
λ are adjusted within the range of

{
10−5, 10−4, . . . , 105}.

The parameter β is fixedly set to 10−3. The kernel ex-
treme learning machine regularization coefficient P and the
kernel parameter σ are both fixedly set to 1.

1 code: http://mlda.swu.edu.cn/codes.php?name=ICM2L.
2 code: http://www.escience.cn/people/huangjun/index.html.
3 code: http://mlda.swu.edu.cn/codes.php?name=McWL.
4 code: http://mlda.swu.edu.cn/codes.php?name=iMvWL.

http://mlda.swu.edu.cn/codes.php?name=ICM2L
http://www.escience.cn/people/huangjun/index.html
http://mlda.swu.edu.cn/codes.php?name=McWL
http://mlda.swu.edu.cn/codes.php?name=iMvWL


D. Zhao, Q. Gao, Y. Lu et al. Applied Soft Computing Journal 102 (2021) 107120

a
b
s
c
f
t
s
T
t
L
m
w
v
o

v
p
F
T
i
d

4

w
s
f

Table 1
Data set description.
Views Yeast Pascal07 Corel5k Espgame Iaprtc12 Mirflickr

1 Genetic Expression
(79)

DenseSift
(1000)

DenseHue
(100)

DenseHue
(100)

DenseHue
(100)

DenseHue
(100)

2 Phylogenetic Profile
(24)

HarrisSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

3 – Gist(512) Gist(512) Gist(512) Gist(512) Gist(512)
4 – HSV(4096) HSV(4096) HSV(4096) HSV(4096) HSV(4096)
5 – RGB(4096) – Lab(4096) Lab(4096) Lab(4096)
6 – Tags(804) – RGB(4096) RGB(4096) RGB(4096)

l 14 20 260 268 291 457
n 2417 9963 4999 20770 19627 25000
A
e
a

o
a
s
t
s
b
a
c
i
o
f

Table 2
Summary of the Friedman Statistics FF (k = 5, N = 24) and the critical value
in terms of each evaluation metric (k: Comparing Algorithms; N: Data sets).
Metric FF Critical Value(ρ = 0.05)

Hamming Loss 55.0902

1.2452

Subset Accuracy 53.6445
Average Precision 28.1703
One Error 30.8975
Ranking Loss 20.3508
Coverage 13.6574
AUC 8.6484

Both McWL and iMvWL are designed to solve the multi-view
nd multi-label problem of missing labels directly. The difference
etween TM3L and iMvWL and McWL is the unified learning
trategy adopted by iMvWL and McWL. But neither of them
onsiders the dependency information among views and the dif-
erence in each view’s contribution. ICM2L is designed to solve
he problem of multi-view and multi-label learning. We use it to
olve the problem of multi-view and multi-label of missing labels.
he difference between TM3L and ICM2L is that ICM2L ignores
he problem of different contributions from different views. The
SML method is not directly utilized to solve the multi-view
ulti-label with missing label learning problems. In this paper,
e build a multi-label missing label learning model based on each
iew data. LSML predicts the final result by combining the output
f m multi-view models with equal contribution weights.
For all comparison methods, we use a five-fold cross-

alidation method on the training set, and select the optimal
arameter values from the range suggested by the original paper.
or our method, the parameters we choose are α, C , and λ.
o avoid errors caused by random effects, all experiments were
ndependently repeated 10 times, and the mean and standard
eviation were reported.

.2. Data sets

In order to verify the effectiveness of the TM3L algorithm,
e tested it on six multi-view and multi-label benchmark data
ets with five-fold cross-validation, which can be downloaded
rom [48]5 and Mulan.6 Details are summarized in Table 1.

4.3. Evaluation metrics

We use seven widely used multi-label evaluation metrics for
performance comparison [49]: (1) Hamming Loss (HL); (2) Subset
Accuracy (SA); (3) Average Precision (AP); (4) One Error (OE); (5)
Ranking Loss (RL); (6) Coverage (CV) and (7) AUC. These metrics
can be divided into two categories based on different types of

5 data sets: http://lear.inrialpes.fr/people/guillaumin/data.php.
6 data sets: http://mulan.sourceforge.net/datasets-mlc.html.
7

reference: (1) example-based criteria; (2) label-based criteria. HL,
SA, AP, OE, RL, and CV are example-based criteria, while AUC
is a label-based criterion. Performance can be evaluated from
the perspective of ranking and classification, where AP, OE, RL,
CV, and AUC are ranking-based metrics, while HL and CV are
example-based classification metrics. Formal definitions of these
seven metrics can be found in the literature [49–51]. Among
them, the larger the value of SA, AUC and AP, the better the
performance, and the smaller the values of HL, OE, RL and CV,
the better the performance.

4.4. Experimental results and analysis

All the experiments are implemented using Matlab 2016a on a
standard Windows PC with an Intel 4.2-GHz CPU and 16-GB RAM.
In order to create a missing label scenario, we randomly delete all
positive labels used for training data according to the preset loss
rate w%, and for each instance, keep at least one positive class
to avoid empty instances or labels. In this article w% is set to 0%,
40%, 60% and 90%. Tables A.3 to A.6 list the average results (mean
± standard deviation) of each comparison algorithm for each
comparison index on 6 multi-view and multi-label benchmark
data sets under various missing labels rates, the best results
are shown in bold. Because McWL algorithm consumes a lot of
memory during training, it will run out of memory on some data
sets (OM means algorithm out of memory).

In addition, the Friedman test [52] was used to compare sta-
tistical performance between the comparison methods. Since the
loss rate varies from 0% to 90%, there are 24 (4 × 6) points
in total. Table 2 summarizes the Friedman statistic FF and the
critical difference (CD) corresponding to each evaluation criterion,
where the uppermost row is the critical difference CD = 1.2452.
s shown in Table 2, at the significance level ρ = 0.05, for
ach evaluation index, the null hypothesis that all comparison
lgorithms are equivalently executed is explicitly rejected.
The Nemenyi test [16] with qα = 2.728 at a significance level

f 5% is used as a post-test. When the difference between the
verage ranking of the two comparison algorithms on all data
ets is greater than the critical difference, it is considered that
he two algorithms have significant differences. Otherwise, no
ignificant difference is considered. Fig. 2 shows a comparison
etween each algorithm under different evaluation indicators. For
lgorithms with no significant difference, they are connected by
olored solid lines. From the left to the right of each evaluation
ndex submap, the performance of the algorithms decreases in
rder. Comprehensively reporting the experimental results, the
ollowing conclusions are drawn:

1. TM3L algorithm achieves the best performance on almost
every evaluation metrics under all data sets. Fig. 2 clearly
shows the advantages of our method in exploring multi-
view and multi-label missing label data. In detail, Ta-
bles A.3 to A.6 show that when the missing rates are

http://lear.inrialpes.fr/people/guillaumin/data.php
http://mulan.sourceforge.net/datasets-mlc.html
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Fig. 2. The performance comparison of algorithms.
Fig. 3. The experimental results of TM3L and its variants on SA and OE with a missing labels rate of 40%.
0%, 40%, 60%, and 90%, TM3L is superior to other com-
petitive methods in 88.1%, 83.3%, 71.4%, and 78.6%, re-
spectively. Especially, the performance under the SA is
usually much better than other algorithms. On the AUC,
8

ICM2L and iMvWL can achieve better results on some data
sets compared to TM3L. These experimental results also
indicate that the results obtained by this two-step solution
may be suboptimal.
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Fig. 4. Parameter sensitivity analysis of TM3L algorithm over Yeast , Corel5k, and Pascal07 data sets.

Fig. 5. Experimental results of TM3L with different parameters r .

Fig. 6. Convergence trend analysis.

9
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Table A.3
Experimental results of 5 algorithms on 6 data sets with the missing label rate of 0%.
Data set Metric ICM2L LSML McWL iMvWL TM3L

Yeast

HL 0.2778 ± 0.0079 0.2608 ± 0.0082 0.2246 ± 0.0101 0.2689 ± 0.0049 0.1927 ± 0.0061
SA 0.0041 ± 0.0021 0.0811 ± 0.0105 0.0186 ± 0.0021 0.0075 ± 0.0038 0.1822 ± 0.0094
AP 0.7078 ± 0.0137 0.6102 ± 0.0082 0.7644 ± 0.0091 0.7038 ± 0.0105 0.7767 ± 0.0176
OE 0.2350 ± 0.0238 0.3583 ± 0.0192 0.2236 ± 0.0041 0.2915 ± 0.0197 0.2120 ± 0.0354
RL 0.2147 ± 0.0106 0.3463 ± 0.0122 0.1653 ± 0.0109 0.2139 ± 0.0078 0.1568 ± 0.0094
CV 0.5031 ± 0.0061 0.6233 ± 0.0131 0.4455 ± 0.0073 0.4937 ± 0.0092 0.4400 ± 0.0038
AUC 0.7761 ± 0.0089 0.6381 ± 0.0107 0.8217 ± 0.0082 0.7753 ± 0.0062 0.8276 ± 0.0085

Pascal07

HL 0.1147 ± 0.0034 0.0661 ± 0.0016 0.0874 ± 0.0004 0.0861 ± 0.0017 0.0486 ± 0.0013
SA 0.0379 ± 0.0098 0.1946 ± 0.0461 0.0936 ± 0.0098 0.0986 ± 0.0118 0.3942 ± 0.0095
AP 0.4594 ± 0.0253 0.6627 ± 0.0088 0.6713 ± 0.0031 0.6555 ± 0.0130 0.7880 ± 0.0040
OE 0.5886 ± 0.0018 0.4741 ± 0.0160 0.4199 ± 0.0028 0.3968 ± 0.0208 0.2534 ± 0.0100
RL 0.2408 ± 0.0403 0.0841 ± 0.0030 0.1068 ± 0.0012 0.1381 ± 0.0115 0.0659 ± 0.0024
CV 0.3085 ± 0.0480 0.1235 ± 0.0034 0.1501 ± 0.0015 0.1888 ± 0.0155 0.1077 ± 0.0028
AUC 0.7574 ± 0.0381 0.9056 ± 0.0029 0.8785 ± 0.0004 0.8522 ± 0.0108 0.9197 ± 0.0016

Corel5k

HL 0.0223 ± 0.0001 0.0126 ± 0.0000 0.0176 ± 0.0000 0.0218 ± 0.0000 0.0115 ± 0.0004
SA 0.0000 ± 0.0000 0.0104 ± 0.0024 0.0416 ± 0.0056 0.0000 ± 0.0000 0.0655 ± 0.0055
AP 0.2576 ± 0.0040 0.4180 ± 0.0069 0.4324 ± 0.0076 0.2739 ± 0.0033 0.5304 ± 0.0095
OE 0.6968 ± 0.0071 0.5217 ± 0.0117 0.4724 ± 0.0000 0.6872 ± 0.0026 0.3762 ± 0.0165
RL 0.1494 ± 0.0017 0.0755 ± 0.0019 0.1647 ± 0.0000 0.1299 ± 0.0028 0.0728 ± 0.0038
CV 0.3345 ± 0.0004 0.1836 ± 0.0059 0.3813 ± 0.0050 0.2858 ± 0.0041 0.1878 ± 0.0064
AUC 0.8516 ± 0.0025 0.9239 ± 0.0013 0.8367 ± 0.0000 0.8706 ± 0.0029 0.9268 ± 0.0043

Espgame

HL 0.0287 ± 0.0004 0.0173 ± 0.0001

OM

0.0283 ± 0.0001 0.0169 ± 0.0001
SA 0.0000 ± 0.0000 0.0045 ± 0.0006 0.0000 ± 0.0000 0.0115 ± 0.0020
AP 0.2191 ± 0.0130 0.3186 ± 0.0017 0.2366 ± 0.0016 0.3813 ± 0.0033
OE 0.7133 ± 0.0301 0.5594 ± 0.0052 0.6741 ± 0.0002 0.4751 ± 0.0052
RL 0.2026 ± 0.0020 0.1343 ± 0.0009 0.1904 ± 0.0019 0.1314 ± 0.0011
CV 0.4791 ± 0.0008 0.3421 ± 0.0023 0.4467 ± 0.0036 0.3552 ± 0.0027
AUC 0.8005 ± 0.0015 0.8681 ± 0.0008 0.8119 ± 0.0013 0.8693 ± 0.0011

Iaprtc12

HL 0.0323 ± 0.0001 0.0194 ± 0.0000

OM

0.0313 ± 0.0000 0.0191 ± 0.0002
SA 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0106 ± 0.0019
AP 0.2038 ± 0.0003 0.3282 ± 0.0014 0.2422 ± 0.0014 0.4132 ± 0.0017
OE 0.7201 ± 0.0050 0.5410 ± 0.0071 0.6242 ± 0.0015 0.4493 ± 0.0030
RL 0.1891 ± 0.0008 0.1053 ± 0.0014 0.1646 ± 0.0022 0.1024 ± 0.0010
CV 0.4970 ± 0.0010 0.3066 ± 0.0025 0.4353 ± 0.0022 0.3221 ± 0.0046
AUC 0.8110 ± 0.0007 0.8938 ± 0.0000 0.8346 ± 0.0009 0.8963 ± 0.0012

Mirflickr

HL 0.0131 ± 0.0000 0.0058 ± 0.0001

OM

0.0132 ± 0.0001 0.0058 ± 0.0000
SA 0.0000 ± 0.0000 0.2518 ± 0.0040 0.0000 ± 0.0000 0.2554 ± 0.0031
AP 0.0925 ± 0.0014 0.0962 ± 0.0022 0.0944 ± 0.0049 0.0990 ± 0.0000
OE 0.9076 ± 0.0045 0.8771 ± 0.0041 0.8869 ± 0.0035 0.8781 ± 0.0026
RL 0.2877 ± 0.0011 0.1831 ± 0.0039 0.2848 ± 0.0087 0.1693 ± 0.0000
CV 0.4985 ± 0.0015 0.3285 ± 0.0053 0.4918 ± 0.0073 0.3072 ± 0.0011
AUC 0.7283 ± 0.0013 0.5682 ± 0.0023 0.7268 ± 0.0045 0.5758 ± 0.0031
2. From the comparison of TM3L and LSML results, we can
see that the performance of the traditional single-view
multi-label method directly connected to the multi-view
multi-label learning algorithm is not as good as directly
considering the multi-view learning problem model, which
verifies that multi-view learning is more effective than
single-view learning. TM3L comparing iMvWL and McWL
shows that it is important to consider the measure of de-
pendency between different views. In particular, compared
to the McWL algorithm, TM3L memory usage is lower. The
comparison of TM3L and ICM2L algorithms shows that the
optimal solution of the neural network has achieved more
effective results.

3. As can be seen from Fig. 2, the TM3L algorithm is signifi-
cantly better than other algorithms at 78.6% compared to
other algorithms. Specifically, on HL, SA, RL, and CV, as
shown in Fig. 2, there is no significant difference compared
to LSML; It is significantly superior to all other algorithms
on AP and OE; On AUC, there is no significant difference
from LSML and iMvWL algorithms.

Based on the above analysis, it can be seen that the TM3L algo-
ithm has obtained a certain competitive performance compared
ith other popular algorithms. A large number of experimen-
al analyzes have verified the effectiveness of considering the
10
combination of subspace learning and multi-label neural net-
work learning to solve multi-view and multi-label missing label
learning.

4.5. Component analysis

To further verify the effectiveness of TM3L in capturing depen-
dencies among multiple views, view contribution weights, and
label correlations, we conducted additional component analysis
experiments on the Yeast , Core15k, and Pascal07 data sets, and
reported them in Fig. 3. SA and OE values. In Fig. 3, we set
the missing labels ratio to 40%. The definitions of TM3L and
its variants are as follows: TM3L-D means ignoring the depen-
dency among views; TM3L-LC means ignoring label correlation;
TM3L-W means ignoring the contribution of different views.

From Fig. 3, we can observe that TM3L outperforms its vari-
ants in all settings. Compared with TM3L-D and TM3L-W, TM3L
utilizes the inter-view dependency and view weighting informa-
tion, respectively, thereby improving the final performance. These
results confirm our motives for explicitly using view individual
dependence and weight contributions. In most cases, across three
data sets, TM3L is better than TM3L-LC. The internal reason is
that TM3L captures the correlation between tags, which is crucial
in multi-tag learning. Furthermore, it confirms the necessity of
obtaining the label correlation and also proves the rationality and
validity of the label correlation matrix S learned by TM3L.
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Table A.4
Experimental results of 5 algorithms on 6 data sets with the missing label rate of 40%.
Data set Metric ICM2L LSML McWL iMvWL TM3L

Yeast

HL 0.2683 ± 0.0140 0.2633 ± 0.0047 0.2243 ± 0.0066 0.2695 ± 0.0069 0.1999 ± 0.0023
SA 0.0104 ± 0.0083 0.0678 ± 0.0066 0.0135 ± 0.0052 0.0116 ± 0.0056 0.1631 ± 0.0082
AP 0.7061 ± 0.0126 0.6060 ± 0.0070 0.7600 ± 0.00151 0.7096 ± 0.0098 0.7648 ± 0.0056
OE 0.2536 ± 0.0010 0.3538 ± 0.0173 0.2702 ± 0.0066 0.2518 ± 0.0206 0.2253 ± 0.0129
RL 0.2109 ± 0.0092 0.3512 ± 0.0123 0.1675 ± 0.0066 0.2120 ± 0.0055 0.1662 ± 0.0041
CV 0.4941 ± 0.0164 0.6531 ± 0.0091 0.4434 ± 0.0069 0.4946 ± 0.0157 0.4600 ± 0.0050
AUC 0.7786 ± 0.0089 0.6342 ± 0.0117 0.8175 ± 0.0069 0.7788 ± 0.0058 0.8200 ± 0.0028

Pascal07

HL 0.1166 ± 0.0008 0.0583 ± 0.0000 0.0918 ± 0.0001 0.0875 ± 0.0026 0.0468 ± 0.0006
SA 0.0309 ± 0.0003 0.2662 ± 0.0111 0.0871 ± 0.0013 0.0955 ± 0.0135 0.3965 ± 0.0086
AP 0.4610 ± 0.0018 0.7061 ± 0.0045 0.6359 ± 0.0000 0.6478 ± 0.0163 0.7756 ± 0.0071
OE 0.5871 ± 0.0008 0.3641 ± 0.0107 0.4724 ± 0.0030 0.4049 ± 0.0194 0.2658 ± 0.0099
RL 0.2363 ± 0.0020 0.0876 ± 0.0022 0.1158 ± 0.0035 0.1438 ± 0.0090 0.0756 ± 0.0032
CV 0.2989 ± 0.0033 0.1346 ± 0.0030 0.1562 ± 0.0055 0.1942 ± 0.0115 0.1184 ± 0.0024
AUC 0.7652 ± 0.0039 0.8945 ± 0.0016 0.8739 ± 0.0048 0.8470 ± 0.0098 0.9103 ± 0.0025

Corel5k

HL 0.0243 ± 0.0020 0.0127 ± 0.0000 0.0214 ± 0.0000 0.0216 ± 0.0000 0.0117 ± 0.0001
SA 0.0000 ± 0.0000 0.0056 ± 0.0043 0.0135 ± 0.0025 0.0012 ± 0.0012 0.0490 ± 0.0052
AP 0.1307 ± 0.1134 0.3964 ± 0.0078 0.2739 ± 0.0053 0.2772 ± 0.0054 0.4999 ± 0.0090
OE 0.8742 ± 0.1258 0.5279 ± 0.0074 0.6976 ± 0.0135 0.6754 ± 0.0056 0.4104 ± 0.0136
RL 0.0754 ± 0.0754 0.0875 ± 0.0030 0.1434 ± 0.0000 0.1291 ± 0.0028 0.0835 ± 0.0056
CV 0.4113 ± 0.0881 0.2121 ± 0.0056 0.3151 ± 0.0020 0.2875 ± 0.0045 0.2144 ± 0.0125
AUC 0.7896 ± 0.0606 0.9123 ± 0.0043 0.8582 ± 0.0000 0.8714 ± 0.0036 0.9166 ± 0.0056

Espgame

HL 0.0290 ± 0.0002 0.0173 ± 0.0001

OM

0.0285 ± 0.0001 0.0172 ± 0.0002
SA 0.0000 ± 0.0000 0.0044 ± 0.0005 0.0000 ± 0.0000 0.0106 ± 0.0008
AP 0.2045 ± 0.0024 0.3095 ± 0.0017 0.2324 ± 0.0054 0.3611 ± 0.0023
OE 0.7558 ± 0.0035 0.5630 ± 0.0064 0.6787 ± 0.0182 0.4944 ± 0.0046
RL 0.2036 ± 0.0030 0.1519 ± 0.0011 0.1909 ± 0.0010 0.1518 ± 0.0029
CV 0.4763 ± 0.0064 0.3890 ± 0.0032 0.4519 ± 0.0028 0.4056 ± 0.0055
AUC 0.8000 ± 0.0027 0.8509 ± 0.0014 0.8120 ± 0.0009 0.8493 ± 0.0016

Iaprtc12

HL 0.0322 ± 0.0000 0.0194 ± 0.0000

OM

0.0314 ± 0.0000 0.0190 ± 0.0001
SA 0.0000 ± 0.0000 0.0012 ± 0.0000 0.0003 ± 0.0003 0.0056 ± 0.0006
AP 0.2093 ± 0.0034 0.3208 ± 0.0027 0.2362 ± 0.0015 0.3921 ± 0.0028
OE 0.6850 ± 0.0131 0.5572 ± 0.0054 0.6448 ± 0.0074 0.4652 ± 0.0043
RL 0.1847 ± 0.0020 0.1144 ± 0.0012 0.1643 ± 0.0002 0.1044 ± 0.0013
CV 0.4886 ± 0.0032 0.3297 ± 0.0045 0.4339 ± 0.0021 0.3305 ± 0.0033
AUC 0.8156 ± 0.0022 0.8859 ± 0.0011 0.8344 ± 0.0003 0.8938 ± 0.0008

Mirflickr

HL 0.0133 ± 0.0001 0.0058 ± 0.0001

OM

0.0133 ± 0.0000 0.0058 ± 0.0001
SA 0.0000 ± 0.0000 0.2508 ± 0.0046 0.0000 ± 0.0000 0.2530 ± 0.0078
AP 0.0921 ± 0.0045 0.0885 ± 0.0013 0.0940 ± 0.0024 0.0954 ± 0.0018
OE 0.8988 ± 0.0082 0.8868 ± 0.0039 0.8888 ± 0.0100 0.8800 ± 0.0031
RL 0.2875 ± 0.0025 0.2043 ± 0.0023 0.2863 ± 0.0001 0.1840 ± 0.0031
CV 0.4981 ± 0.0023 0.3638 ± 0.0035 0.4903 ± 0.0005 0.3325 ± 0.0042
AUC 0.7276 ± 0.0034 0.5435 ± 0.0034 0.7270 ± 0.0028 0.5609 ± 0.0042
b
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4.6. Parameter sensitivity analysis

TM3L has four trade-off parameters C , α, β and λ. We tested
he sensitivity of TM3L to four parameters on the Yeast , Corel5k
and Pascal07 data sets, and we fixed the values of three pa-
rameters to known values (for example C = 10−1, α = 105,
β = 103, and λ = 10−5), and then change the value of one of
the parameters in the range

{
10−5, 10−4, . . . , 105

}
. Fig. 4 shows

the change of the HL and AUC values of the algorithm when the
label missing rate of w% = 40%.

The parameter C controls the scaling ratio of the shared space
coefficient. For the parameter α, it controls the contribution of all
views. The parameter β controls the magnitude of the effect of
local label correlation. The parameter λ controls the dependency
of different private subspaces. It can be observed that the pa-
rameter C is effective in taking the intermediate value. Similar to
parameter C , parameter β tends to choose an intermediate value.
Besides, the β value should not be too large, which will cause
TM3L to be unable to obtain valid label correlation information.
From Fig. 4, the values of the other two regularization parameters
are relatively insensitive to changes in TM3L performance. Similar
results and similar results can be obtained on the evaluation
metrics of other data sets.

Further, we design experiments to study the sensitivity of
the shared space dimension r change to the results of the TM3L
11
algorithm. Fig. 5 reports the HL and AUC values of TM3L on the
Yeast data set, with r varying from 0.1dmin to 0.9dmin. It can
e seen that the performance of TM3L keeps increasing with
he increase of r . So in the experiment, we set r = 0.9dmin.
ntuitive understanding is that because of the kernel extreme
earning machine classifier used in the second step of the solution
rocess, increasing the feature amount can effectively improve
he performance of the neural network algorithm.

.7. TM3L algorithm iteration efficiency

We report in this section the convergence trend of TM3L’s first
tep for all methods at the label missing rate of 40%(The main
ptimization process of TM3L is the optimization process of the
irst step. In this section, we only consider the convergence trend
f the first step). Fig. 6 shows the convergence curves on the
ascal07 and Core15k data sets on the first step. It can be seen
rom Fig. 6 that TM3L tends to iterate 25 times on both data sets,
onfirming that our algorithm can converge faster and iterate.
onvergence results are similar to other data sets.

. Conclusion

In this paper, we propose a TM3L method to solve the multi-
abel learning problem of multi-view with missing labels. We
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Table A.5
Experimental results of 5 algorithms on 6 data sets with the missing label rate of 60%.
Data set Metric ICM2L LSML McWL iMvWL TM3L

Yeast

HL 0.2726 ± 0.0106 0.2689 ± 0.0086 0.2269 ± 0.0028 0.2661 ± 0.0065 0.1981 ± 0.0077
SA 0.0062 ± 0.0041 0.0372 ± 0.0123 0.0186 ± 0.0062 0.0095 ± 0.0088 0.1582 ± 0.0166
AP 0.6873 ± 0.0119 0.5864 ± 0.0109 0.7617 ± 0.0095 0.7018 ± 0.0049 0.7589 ± 0.0206
OE 0.2899 ± 0.0083 0.3661 ± 0.0250 0.2557 ± 0.0135 0.2658 ± 0.0074 0.2331 ± 0.0269
RL 0.2241 ± 0.0117 0.3711 ± 0.0105 0.1645 ± 0.0058 0.2113 ± 0.0056 0.1690 ± 0.0140
CV 0.5148 ± 0.0197 0.6905 ± 0.0095 0.4348 ± 0.0025 0.4890 ± 0.0100 0.4568 ± 0.0093
AUC 0.7655 ± 0.0112 0.6161 ± 0.0083 0.8191 ± 0.0035 0.7791 ± 0.0064 0.8164 ± 0.0126

Pascal07

HL 0.1183 ± 0.0000 0.0581 ± 0.0000 0.0959 ± 0.0002 0.0899 ± 0.0024 0.0522 ± 0.0010
SA 0.0266 ± 0.0005 0.2623 ± 0.0083 0.0806 ± 0.0043 0.0898 ± 0.0069 0.3216 ± 0.0087
AP 0.4260 ± 0.0047 0.6978 ± 0.0065 0.6009 ± 0.0023 0.6377 ± 0.0153 0.7411 ± 0.0040
OE 0.5989 ± 0.0000 0.3661 ± 0.0076 0.5010 ± 0.0065 0.4149 ± 0.0116 0.3232 ± 0.0081
RL 0.2940 ± 0.0111 0.0950 ± 0.0027 0.1350 ± 0.0005 0.1503 ± 0.0136 0.0774 ± 0.0011
CV 0.3673 ± 0.0153 0.1448 ± 0.0036 0.1797 ± 0.0016 0.2020 ± 0.0149 0.1196 ± 0.0029
AUC 0.7085 ± 0.0092 0.8848 ± 0.0033 0.8586 ± 0.0001 0.8392 ± 0.0135 0.9090 ± 0.0018

Corel5k

HL 0.0224 ± 0.0001 0.0127 ± 0.0000 0.0175 ± 0.0000 0.0216 ± 0.0000 0.0119 ± 0.0002
SA 0.0000 ± 0.0000 0.0054 ± 0.0029 0.0350 ± 0.0069 0.0000 ± 0.0000 0.0468 ± 0.0076
AP 0.2581 ± 0.0126 0.4002 ± 0.0052 0.4377 ± 0.0123 0.2781 ± 0.0053 0.4883 ± 0.0105
OE 0.6882 ± 0.0185 0.5377 ± 0.0111 0.4780 ± 0.0185 0.6773 ± 0.0179 0.4228 ± 0.0177
RL 0.1484 ± 0.0065 0.0921 ± 0.0025 0.1148 ± 0.0040 0.1340 ± 0.0033 0.0912 ± 0.0046
CV 0.3319 ± 0.0123 0.2251 ± 0.0078 0.2713 ± 0.0057 0.2962 ± 0.0066 0.2319 ± 0.0082
AUC 0.8515 ± 0.0056 0.9081 ± 0.0031 0.8863 ± 0.0045 0.8663 ± 0.0032 0.9082 ± 0.0042

Espgame

HL 0.0286 ± 0.0004 0.0173 ± 0.0001

OM

0.0286 ± 0.0001 0.0172 ± 0.0001
SA 0.0000 ± 0.0000 0.0038 ± 0.0006 0.0000 ± 0.0000 0.0099 ± 0.0018
AP 0.2129 ± 0.0103 0.3140 ± 0.0040 0.2265 ± 0.0047 0.3469 ± 0.0044
OE 0.7375 ± 0.0193 0.5639 ± 0.0111 0.7019 ± 0.0155 0.5039 ± 0.0069
RL 0.2013 ± 0.0041 0.1433 ± 0.0012 0.1912 ± 0.0027 0.1686 ± 0.0016
CV 0.4702 ± 0.0071 0.3662 ± 0.0019 0.4501 ± 0.0043 0.4442 ± 0.0030
AUC 0.8043 ± 0.0043 0.8592 ± 0.0016 0.8114 ± 0.0022 0.8308 ± 0.0013

Iaprtc12

HL 0.0325 ± 0.0001 0.0194 ± 0.0000

OM

0.0312 ± 0.0002 0.0189 ± 0.0002
SA 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0045 ± 0.0007
AP 0.2041 ± 0.0017 0.3205 ± 0.0027 0.2406 ± 0.0000 0.3799 ± 0.0032
OE 0.7118 ± 0.0112 0.5508 ± 0.0089 0.6358 ± 0.0019 0.4745 ± 0.0049
RL 0.1871 ± 0.0038 0.1176 ± 0.0011 0.1660 ± 0.0021 0.1169 ± 0.0023
CV 0.4935 ± 0.0088 0.3446 ± 0.0028 0.4398 ± 0.0015 0.3676 ± 0.0055
AUC 0.8120 ± 0.0035 0.8830 ± 0.0000 0.8333 ± 0.0009 0.8821 ± 0.0021

Mirflickr

HL 0.0132 ± 0.0001 0.0058 ± 0.0001

OM

0.0132 ± 0.0000 0.0059 ± 0.0000
SA 0.0000 ± 0.0000 0.2505 ± 0.0051 0.0000 ± 0.0000 0.2515 ± 0.0059
AP 0.0951 ± 0.0008 0.0920 ± 0.0014 0.0945 ± 0.0002 0.0981 ± 0.0023
OE 0.8981 ± 0.0043 0.8830 ± 0.0029 0.8901 ± 0.0010 0.8760 ± 0.0041
RL 0.2869 ± 0.0018 0.1939 ± 0.0015 0.4975 ± 0.0027 0.1791 ± 0.0014
CV 0.4989 ± 0.0001 0.3464 ± 0.0036 0.4975 ± 0.0027 0.3243 ± 0.0022
AUC 0.7266 ± 0.0005 0.5558 ± 0.0036 0.7252 ± 0.0010 0.5714 ± 0.0062
v
r

adopt a two-step learning strategy. The first step is to learn the
shared subspace of the entire views data set. We learn to obtain
shared subspace information under the unified framework by
using the dependency of the private spatial information and the
difference in the contribution of each view. In the second step,
a multi-label classification learning method of extreme learn-
ing machine combined with the correlation between labels is
proposed to solve the multi-label classification problem under in-
complete label sets. The biggest difference from previous learning
methods that focus on multi-view and multi-label joint learning
by capturing shared and individual information between multi-
ple views is that TM3L has the advantages of both multi-view
learning and multi-label learning algorithms. A large number of
experiments on 6 benchmark data sets show that our proposed
method has a certain competitive performance, and effectively
solves the problem of the missing label through shared subspace
learning and effective utilize of label correlations.

Although this two-step learning method has a high learning
ate, it also faces such problems. (1) There is no communication
etween subspace learning and label space, which leads to the
12
process of model solving may be a suboptimal model. (2) The
matrix factorization may ignore the non-linear characteristics
of the data. In the future, we will consider solving the above
problems.
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See Tables A.3–A.6.
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Table A.6
Experimental results of 5 algorithms on 6 data sets with the missing label rate of 90%.
Data set Metric ICM2L LSML McWL iMvWL TM3L

Yeast

HL 0.2673 ± 0.0075 0.2802 ± 0.0044 0.2792 ± 0.0021 0.2677 ± 0.0044 0.2149 ± 0.0023
SA 0.0098 ± 0.0009 0.0087 ± 0.0030 0.0176 ± 0.0031 0.0066 ± 0.0038 0.0791 ± 0.0173
AP 0.7041 ± 0.0062 0.5629 ± 0.0104 0.7025 ± 0.0020 0.7025 ± 0.0125 0.7434 ± 0.0123
OE 0.2679 ± 0.0024 0.3993 ± 0.0129 0.2464 ± 0.0083 0.2658 ± 0.0348 0.2398 ± 0.0218
RL 0.2100 ± 0.0067 0.4002 ± 0.0118 0.2123 ± 0.0002 0.2095 ± 0.0048 0.1836 ± 0.0053
CV 0.4900 ± 0.0110 0.7332 ± 0.0085 0.4834 ± 0.0017 0.4867 ± 0.0098 0.4822 ± 0.0060
AUC 0.7798 ± 0.0053 0.5866 ± 0.0116 0.7790 ± 0.0002 0.7792 ± 0.0047 0.8031 ± 0.0041

Pascal07

HL 0.1172 ± 0.0010 0.0595 ± 0.0000 0.1179 ± 0.0000 0.1064 ± 0.0051 0.0549 ± 0.0003
SA 0.0319 ± 0.0038 0.2410 ± 0.0069 0.0339 ± 0.0008 0.0420 ± 0.0222 0.2897 ± 0.0107
AP 0.4374 ± 0.0039 0.6678 ± 0.0071 0.4270 ± 0.0043 0.5273 ± 0.0322 0.6908 ± 0.0072
OE 0.5863 ± 0.0035 0.3882 ± 0.0093 0.5919 ± 0.0010 0.5789 ± 0.0660 0.3611 ± 0.0111
RL 0.2772 ± 0.0075 0.1196 ± 0.0058 0.3071 ± 0.0100 0.1973 ± 0.0151 0.1203 ± 0.0047
CV 0.3541 ± 0.0102 0.1763 ± 0.0077 0.3802 ± 0.0084 0.2524 ± 0.0159 0.1735 ± 0.0059
AUC 0.7227 ± 0.0081 0.8572 ± 0.0062 0.7020 ± 0.0071 0.7892 ± 0.0155 0.8646 ± 0.0047

Corel5k

HL 0.0224 ± 0.0001 0.0130 ± 0.0000 0.0213 ± 0.0000 0.0218 ± 0.0000 0.0126 ± 0.0002
SA 0.0005 ± 0.0005 0.0048 ± 0.0023 0.0060 ± 0.0046 0.0018 ± 0.0026 0.0144 ± 0.0054
AP 0.2435 ± 0.0156 0.3147 ± 0.0049 0.2792 ± 0.0093 0.2661 ± 0.0024 0.3565 ± 0.0080
OE 0.7086 ± 0.0466 0.6081 ± 0.0107 0.6742 ± 0.0183 0.6969 ± 0.0165 0.5459 ± 0.0155
RL 0.1648 ± 0.0120 0.1835 ± 0.0053 0.1468 ± 0.0017 0.1541 ± 0.0033 0.1794 ± 0.0033
CV 0.3572 ± 0.0235 0.4017 ± 0.0073 0.3239 ± 0.0019 0.3467 ± 0.0107 0.4201 ± 0.0074
AUC 0.8354 ± 0.0111 0.8243 ± 0.0034 0.8537 ± 0.0019 0.8462 ± 0.0036 0.8203 ± 0.0028

Espgame

HL 0.0283 ± 0.0001 0.0174 ± 0.0001

OM

0.0284 ± 0.0001 0.0175 ± 0.0000
SA 0.0000 ± 0.0000 0.0060 ± 0.0009 0.0000 ± 0.0000 0.0089 ± 0.0015
AP 0.2215 ± 0.0025 0.2781 ± 0.0023 0.2308 ± 0.0029 0.3446 ± 0.0030
OE 0.7207 ± 0.0053 0.5838 ± 0.0032 0.6856 ± 0.0051 0.5042 ± 0.0050
RL 0.1967 ± 0.0020 0.1992 ± 0.0013 0.1992 ± 0.0034 0.1766 ± 0.0022
CV 0.4677 ± 0.0030 0.5048 ± 0.0048 0.4711 ± 0.0074 0.4642 ± 0.0061
AUC 0.8072 ± 0.0025 0.7961 ± 0.0014 0.8039 ± 0.0029 0.8232 ± 0.0025

Iaprtc12

HL 0.0323 ± 0.0003 0.0195 ± 0.0000

OM

0.0313 ± 0.0000 0.0193 ± 0.0001
SA 0.0000 ± 0.0000 0.0029 ± 0.0000 0.0000 ± 0.0000 0.0002 ± 0.0001
AP 0.2076 ± 0.0101 0.2933 ± 0.0026 0.2420 ± 0.0001 0.2972 ± 0.0044
OE 0.6944 ± 0.0084 0.5711 ± 0.0034 0.6197 ± 0.0019 0.5710 ± 0.0100
RL 0.1891 ± 0.0073 0.1518 ± 0.0000 0.1684 ± 0.0010 0.1425 ± 0.0027
CV 0.5000 ± 0.0148 0.4495 ± 0.0032 0.4483 ± 0.0016 0.4187 ± 0.0072
AUC 0.8117 ± 0.0070 0.8410 ± 0.0011 0.8303 ± 0.0003 0.8547 ± 0.0028

Mirflickr

HL 0.0131 ± 0.0000 0.0059 ± 0.0001

OM

0.0132 ± 0.0000 0.0058 ± 0.0001
SA 0.0000 ± 0.0000 0.2433 ± 0.0036 0.0000 ± 0.0000 0.2583 ± 0.0037
AP 0.0988 ± 0.0034 0.0679 ± 0.0008 0.0942 ± 0.0024 0.0809 ± 0.0010
OE 0.8855 ± 0.0100 0.9170 ± 0.0029 0.8892 ± 0.0048 0.8936 ± 0.0010
RL 0.2920 ± 0.0027 0.2496 ± 0.0043 0.3066 ± 0.0003 0.2249 ± 0.0030
CV 0.5081 ± 0.0067 0.4261 ± 0.0067 0.5266 ± 0.0009 0.3930 ± 0.0060
AUC 0.7194 ± 0.0036 0.4896 ± 0.0022 0.7022 ± 0.0002 0.5193 ± 0.0020
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