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a b s t r a c t

Multi-view multi-label learning tasks often appear in various critical data classification scenarios.
Each training sample has multiple heterogeneous data views associated with multiple labels in this
learning framework simultaneously. Nevertheless, most existing methods do not consider that a single
view cannot fully predict all unknown labels caused by non-aligned views, which leads to insufficient
consideration of the relationship between the features and labels of each view, and the learning effect
is not ideal. In this paper, we develop a novel method that uses view-specific labels and label-feature
dependence maximization. Concretely, we first assume that each view and its corresponding label
space have a smooth local structure. In this way, the view-specific label learning model is constructed,
enhancing the consistency and complementarity of label space information. Then, multiple multi-label
classifiers are constructed by maximizing label-feature dependence. Finally, the linear classification
model is extended to the nonlinear, and the prediction stage is combined with the contribution weight
of each view. The results of several benchmark datasets show that our proposed method is significantly
more effective than the state-of-the-art methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of data collection technology
n big data, objects often have features from different sources,
hat is, the feature representation of multiple views [1–3]. For
xample, video data can be represented by three various forms
f data at the same time: text, image, and sound (the diversity of
ata collection); for pictures, we can use different characteristics
o describe (the variety of data description), such as texture de-
cription, shape description, color description, surrounding text.
Multi-view(MV) learning methods have been developed and

aid more attention, but previous studies have mainly focused
n where each target object has only a single label [4–6]. Each
bject may contain multiple semantic information in the real
orld, such as multiple labels that simultaneously annotate a
icture with semantic information: blue sky, sea, and fish. It
an be observed that there are interdependencies among labels
n multi-label(ML) learning. However, a basic assumption of the
raditional single-label multi-view learning method is that the
abels are mutually exclusive, which conflicts with the multi-
abel learning problem. Therefore, traditional multi-view learning
an no longer solve the multi-semantic problem of multi-source
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nhui University, Hefei 230601, PR China.

E-mail address: qingweigao@ahu.edu.cn (Q. Gao).
ttps://doi.org/10.1016/j.asoc.2022.109071
568-4946/© 2022 Elsevier B.V. All rights reserved.
heterogeneous data. Researchers have proposed that the multi-
view multi-label framework has been applied in many fields,
such as image annotation [7,8], medical diagnosis [9], and video
analysis [10].

A simple solution to the multi-view multi-label(MVML) prob-
lem is to consider concatenating the data of multiple views to
degenerate the MVML problem into a multi-label problem. But
it ignores the inherent physical meaning of each view, and high-
dimensional data may cause unique catastrophic problems and
over-fitting problems. Another method is to perform parallel
learning for each view and then directly merge multiple views
when predicting. However, it ignores the supplementary infor-
mation among the views and does not consider the impact of the
different contributions of each view. Consistency can explicitly
use the corresponding information hidden in the original multi-
view features, and complementarity can describe the difference
among various views [11]. Therefore, how to use the consis-
tency and complementary information between different views
in MVML learning is still a challenging problem, which can obtain
better performance.

In multi-view learning, it is usually assumed that multiple
views are aligned, but in reality, it is usually challenging to
associate multiple views with each other due to data privacy
protection considerations. For example, in the recommendation
system, user information among multiple systems cannot be ef-
fectively connected and interacted for data security and privacy

https://doi.org/10.1016/j.asoc.2022.109071
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rotection [12]. The previous method did not explicitly specify
he unique label information hidden in each view. Due to the
idespread existence of such non-aligned views [13], each view
an only obtain part of the information in the complete label
pace in MVML learning, and a single view cannot characterize
ll relevant labels fully.
A common assumption is that similar features in instance

pace usually share the same subset of labels. Thus, manifold
egularization can explore the local structural properties between
ifferent view features and corresponding labels. For example,
picture marked with a blue sky label should have a blue sky

eature, and vice versa, an image with a blue sky feature should
lso have a blue sky label. However, the label information of each
iew is inconsistent, and the multi-view framework of the unified
abel set cannot effectively reflect the problem of the relevance
f label features. It can observe that the existing multi-view
earning methods do not fully integrate the dependent knowledge
etween labels and features.
Based on the above research, we propose a Multi-view multi-

abel classification method via learning View-specific Labels and
label-feature Dependence maximization(MVLD). MVLD takes a
two-stage strategy: In the first stage, a novel view-specific label
learning method is proposed to solve the label inconsistency
problem caused by non-aligned view information. In the second
stage, we first maximize the label-feature dependence based on
the label smoothness assumption, which solves the problem of
view consistency, and then assign weights to each view to solve
the problem of view complementarity. The multi-label prediction
model is constructed through the above two-stage strategy. The
main contributions of this paper are summarized as follows:

1. As far as we know, we propose a novel MVML learning
method, which is the first attempt to learn view-specific
labels in the MVML framework, which is utilized to solve
the problem of non-aligned views.

2. We use the topological structure information of the view
feature to learn the view-specific labels to solve comple-
mentary view information. The Hilbert–Schmidt Indepen-
dence Criterion(HSIC) theory is utilized to maximize the
dependence between the view-specific labels and the char-
acteristics of each view. The unified multi-label learning
model is constructed to solve the consistency problem of
the view information.

3. We extend the linear model to the nonlinear model to
solve the situation where the given data cannot be linearly
separable.

2. Related work

Our work involves two aspects: multi-view learning and
multi-label learning. This section will briefly review some state-
of-the-art methods in these two areas.

2.1. Multi-label learning

In many computer vision [14,15], natural language learn-
ing [16], and text classification [17] tasks, there is an issue that
an example is associated with multiple labels simultaneously.
Multi-label learning is a learning framework that deals with
multi-semantic problems in objects, which aims to learn a model
that can assign appropriate label sets to unseen examples through
training data. According to different task types, multi-label learn-
ing problems are divided into problem transformation(PT) and
algorithm adaptation(AA) methods.

PT method: Transform the multi-label learning problem into
other known learning problems, such as two or multi-type, and

label ranking problems. BR(binary relevance) [15] decomposes

2

the multi-label problem into independent binary classification
tasks and uses a single-label learning method to solve the
multi-label learning problem. RAkEL(random k-label sets) [18]
transforms the multi-label learning problem into an integrated
multi-class learning problem. CLR(calibrated label ranking) [19]
transforms the multi-label learning problem into a calibration
label ranking problem through the pairwise comparison of labels.

AA Method: Directly design a multi-label method to solve
the problem of instances associated with multiple labels. The
RankSVM(A kernel method for multi-labeled classification) [20]
extends the classic support vector machine (SVM) to the multi-
label learning problem, which can minimize the ranking loss
and perform quadratic programming on each category label’s
SVM classification result to obtain the multi-label classification
result. MLkNN(multi-label learning for k-nearest neighbor) [21]
ses the Maximum A Posteriori(MAP) estimation criterion to
redict its category label set according to the label information
f the k nearest neighbor samples of each sample. Based on
he naive Bayesian multi-label classification algorithm [22], the
eature selection mechanism is added to the algorithm. Zhang
t al. [23] uses K -means to cluster the labels in positive and
egative directions to understand the specific characteristics of
ach label and then combines the SVM classifiers of each label
hrough a binary classifier. Furthermore, Huang et al. [24] obtains
abel-specific features(LLSF) by constructing a least-squares loss
erm and integrating the correlation information between labels
nd the sparsity of weight coefficients.
As mentioned above, multi-label learning methods can be di-

ectly applied to MVML learning via feature sequences or parallel
onnections but rarely consider the consistency and complemen-
arity between different views.

.2. Multi-view multi-label learning

Most of the previous multi-label learning algorithms assume
hat the data come from the same view data, but there are many
ethods and routes to obtain data in the real world. In real
pplication scenarios, a single view cannot accurately describe
he semantic information of the target object. To solve the above
roblems, some literatures propose optimization solutions for
VML, such as:

1. Focusing on the multi-label learning method: Huang et al.
[25] learns view consistency and complementary infor-
mation through label association and view contribution,
and view label-specific feature learning(VLSF) is utilized
to build MVML classifiers. Similarly, Chen et al. [26] first
uses the fusion similarity map to eliminate the ambiguity
of the candidate labels, then guides the specific features
of the labels generated by the cluster analysis, and finally
combines the SVM classifier to learn the prediction model
of each label. Ren et al. [27] fuses multiple views into a
mixed feature matrix and uses a low-rank structure and
manifold regularization to utilize global label correlation
and local smoothness further.

2. Focusing on the multi-view learning method: Liu et al. [28]
first learns the low-dimensional common representation
of all views through the subspace learning(lrMMC), then
restricts it to low rank to adapt to matrix completion, and
finally learns the contribution weight of different views
to explore the complementarity between different views.
Zhang et al. [29] first retains the high-order relationship
between different viewpoints through tensor factoriza-
tion and then mines a more comprehensive public rep-
resentation topology and transfers it to the label space.

Tan et al. [30] learns a distinguished shared subspace
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from incomplete views(iMvML) through nonnegative ma-
trix factorization and learns a robust weak label classi-
fier combined with local label structure. Zhang et al. [31]
learns latent semantic information through matrix factor-
ization and aligns it with benchmarks to obtain consensus
representation information that encodes complementar-
ity and consistency. Tan et al. [32] learns the individual-
ity information and common information about different
views(ICM2L) through nonnegative matrix factorization to
learn the complementary knowledge and consistent com-
munication. Fang et al. [33] through iterative learning of
multi-view features mapping matrix and consistent feature
view representation.

The above methods can solve the problem of MVML to a
ertain extent but are primarily based on linear models. Thus, the
xperiment may not achieve the expected results when the data
s linearly inseparable. In order to handle this problem, scholars
ave added nonlinear mapping methods to the model. For ex-
mple, Zhao et al. [34] learns a common representation matrix
mong views based on subspaces, uses HSIC theory to constrain
he inconsistency among private matrices, builds a two-step stage
ulti-label classifier(TM3L) based on label correlation, and finally
xtends the model to nonlinear models. Zhu et al. [35] first
onnects the label space and feature space of different views by a
atent space, then uses the HSIC to explore the consistency among
ifferent views, and finally expands the model. Wu et al. [36]
dds nonlinear mapping to the neural network structure, which
tilizes the development of shared subspaces and view-specific
nformation to learn view consistency and complementary infor-
ation. On this basis, Shen et al. [9] introduces label correlations

nformation and encodes view-specific information into latent se-
antics to strike a balance with label correlations. Zhao et al. [11]
uilds multiple multi-label models through the kernel method to
earn view-consistency and view-diversity information(CDMM).

As mentioned above, most MVML methods assume that all
iews have a unified label set, but each view can only ob-
ain part of the overall information in practical applications. A
ingle view cannot fully predict all the unknown labels, so dif-
erent views have their specific labels collection. There is cur-
ently no algorithm for learning view-specific labels based on our
nowledge. Although learning common representations through
ubspace methods can avoid this problem, it becomes more
hallenging to learn effective latent low-dimensional consensus
epresentations as to the number of views increases. Besides,
ach view of data has heterogeneity, and a simple linear model
an no longer meet the needs of MVML learning. To this end,
e propose a view-specific label and label-feature dependence
aximization MVML learning framework. Fig. 1 illustrates the
odel framework of the proposed algorithm. First, we learn the
pecific label of each view through the topology of each view.
hen view-specific labels are introduced into the multi-label
earning framework, and the interdependence between each view
eature and labels is enhanced through HSIC, and we combine
he contributions of each view to learn the complementary in-
ormation between the views. Finally, MVLD is extended to the
onlinear model. Compared with the state-of-the-art methods,
VLD has excellent competitiveness on various benchmarks data
ets.

. Proposed approach

.1. Problem statement and notations

Let X = {xv}
m
v=1 denote an MVML data sets with m views,

here Xv = [x1, . . . , xN ]T ∈ RN×dv is the complete feature space
[ ] N×q
f the vth view. Y = y1, y2, . . . , yN ∈ R represents the label

3

Table 1
The symbols and descriptions.
Notations Description

Xv The vth view feature set
Y Multi-view shared label set
U v The vth view specific label matrix
Av The vth view weight coefficient matrix
Lv The vth view graph Laplacian matrix of instance

correlation matrix S
θv The vth view prediction contribution weight matrix
K v The vth view kernel matrix
N The number of training samples
dv The vth view number of features
q The number of labels

space corresponding to the feature set, where y i ∈ {0, 1}N×q is the
abel vector of xi, N is the number of samples, and q represents
he number of labels. For clarity, we define the symbols used in
his paper and their corresponding descriptions in Table 1.

.2. Multi-view multi-label basic model construction

We construct a basic linear classification model through a
east-squares loss for the learning task of the MVML classifi-
ation fusion strategy. The underlying classification model as-
ociates different views with the same set of labels to predict
nknown instance labels, which can use consistent information
cross different views. The specific model is defined as follows:

in
W v

1
2

m∑
v=1

∥XvW v − Y∥
2
F + λR (W v) (1)

where W v is the weight matrix of the linear model of the vth
view, R (W v) is a regularization term, λ is the regularization
parameter, and ∥·∥F represents the Frobenius norm. Eq. (1) is not
uitable for multi-view multi-label data, and the main reasons
re:

1. Although this model can solve the influence of unaligned
views to a certain extent, it ignores the inconsistency of
labels corresponding to views in unaligned views.

2. The model ignores the dependencies between features and
labels. There are often certain local structural characteris-
tics between the features and labels of instances in MVML
data. In short, if the features between two instances are
similar, then their corresponding labels are also similar.

The main issue that needs attention in the next section is how
to effectively solve these two limitations and make our model
more robust and discriminative.

3.3. View-specific labels information extraction

The traditional MVML learning task assigns a unified label set
to all views. An effective strategy in MVML learning is to use
ensemble learning, but the separate mode of ensemble learn-
ing has higher requirements for the classification performance
of each classifier. A unified label set will affect the classifica-
tion effect when used as the prediction target of the ensemble
method. In the real world, due to non-aligned views, each view
can only get a part of the overall label set, and it is impractical to
construct the label set for each view separately. For this reason,
we consider assigning a unique label set for each view in the
integrated classification learning, which will effectively improve
the performance of the algorithm. Assigning a specific label to
each view is conducive to mining the deep relationship between
the label and the feature in each view, which can improve the
performance of the classifier. However, the view-specific label
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Fig. 1. The learning framework of the proposed method MVLD. Illustration of extracting multiple views feature information in instance space and a globally unified
abel set corresponding to the instance.
s not easy to obtain directly through prior knowledge. For this
eason, we adopt a learning method to obtain the specific label
f the view. Thus, the problem can be written in the following
orm:

in
Uv

m∑
v=1

(
∥U v − Y∥

2
F

)
(2)

where U v represents the label set corresponding to the vth view.
For MVML data, an intuitive assumption is that the feature

of each view has its unique geometric topology. Because of the
close association between features and labels, there are geo-
metric similarities between them, which provides a theoretical
basis for us to learn view-specific labels from the geometric
topology of features. Specifically, if two instances from the same
feature space are similar, they should also have similar labels
in the label space Y [8]. Based on this, we can induce learning
view-specific labels through the topology information of different
views. Besides, the feature representations of different views will
provide complementary information, and we use the different
contribution weights of each view to learn it. The local smoothing
regularization term can be defined as follow:
m∑

v=1

n∑
i=1

n∑
j=1

sv
i,j(ui

v − uj
v

)2
=

m∑
v=1

Tr
(
U v

Tωv (Dv − Sv)U v

)
=

m∑
v=1

Tr
(
U v

TωvLvU v

) (3)

where Lv = Dv − Sv is the graph Laplacian matrix, Dv is the
diagonal matrix of d ii

v =
∑n

j=1 s
ij
v , Sv is the weight matrix, and

Tr (·) is the trace of a matrix. The non-negative trade-off param-
eter ω is a weight value between [0 − 1], utilized to measure
the contribution of each feature view when using its data local
structure relationship. The higher the weight value, the greater
the contribution of this heterogeneous data. S ij measures the
similarity between instances X i and X j. Besides, the similarity
between the two instances of the vth view is calculated by heat
kernel:

S i,j
v =

⎧⎨⎩e−

xiv−xjv
2

2σ2 , if xjv ∈ Np
(
xiv

)
or xiv ∈ Np

(
xjv

)
0, otherwise

(4)

here Np (x) is the set of p nearest neighbors of instance x
btained by Euclidean distance neighborhood search. By combin-
ng Eqs. (2) and (3), our final view-specific labels optimization
4

problem can be expressed as:

min
ωv ,Uv

m∑
v=1

(
∥U v − Y∥

2
F + λ1Tr

(
U T

vωvLvU v

))
(5)

3.4. Label-feature dependence maximization

According to the smoothness assumption, the labels and
features of the instances have local structural similarities. For
example, instances labeled ‘‘sea’’ and ‘‘sand’’ should have the
characteristics of ‘‘sea’’ and ‘‘sand’’ and vice versa. To adequately
account for label-function dependencies, we use HSIC [37] to
quantitatively describe the dependencies between labels and
features.

(N − 1)−2Tr (HPHM) (6)

where H, P,M ∈ RN×N , H ij = δij − 1/N if i = j then δij = 1
otherwise δij = 0, H,M, P ∈ RN×N is the feature map of the
sample, and P = XTX is the feature map of the label. According to
the hypothesis of the similarity of the feature and the local struc-
ture of the label, when the information between the two sample
features is very similar, the corresponding predicted label vector
is also very similar. For further analysis, we can regard M as the
semantic information of the sample, and semantic information
and feature information are usually positively correlated [38].
Based on this, we maximize Eq. (6) to improve MVML learning
performance from the perspective of instance semantics. Intu-
itively, the HSIC theory induces theoretical agreement between
the prediction model and the view-specific feature model on the
smoothness assumption.

We construct the view-specific labels and label-feature depen-
dence maximization multi-label prediction model, which goal is
to use the topological structure between different views to induce
the learning of specific features of the view. Then our objective
function can be expressed in the following form:

min
W v

m∑
v=1

{
∥XvW v − U v∥

2
F − λ2Tr

(
W v

TXv
TGvXvW v

)
+λ3 ∥W v∥

2
F

} (7)

where Gv = (N − 1)−2HPvH .
Eq. (7) is conducive to mining more sufficient information

between the label features to predict the unknown label set
of MVML. Furthermore, the learning model used in Eq. (7) is
a linear input model, which cannot handle the nonlinear case



D. Zhao, Q. Gao, Y. Lu et al. Applied Soft Computing 124 (2022) 109071

w
t
m
p
v
T
t
φ

s
W

Q

s

T

U

ω

t

f

A

m

(
s

here MVML data cannot be linearly separable. It is worth noting
hat many existing MVML methods (such as [25,30,32]) use linear
odels, and we expect to use nonlinear models to obtain better
erformance. In the MVML data, there is heterogeneity among the
iews, and the linear model cannot effectively solve this problem.
his paper utilizes a kernel expansion [39,40] method to address
he issues mentioned above. Concretely, we use feature mapping
(·) to map the feature space X to a higher-dimensional Hilbert
pace H (·). Based on the indicator theorem [41], W can represent

= φ(x)TA by a linear combination of input variables. K ij =

κ
(
xi, xj

)
= φ (x) φ(x)T is the kernel matrix, where κ (·, ·) is the

kernel function(the RBF kernel function is used in this article).
Thus, Eq. (7) can be rewritten as:

min
Av

m∑
v=1

{
∥K vAv − U v∥

2
F − λ2Tr

(
Av

TK v
TGvK vAv

)
+ λ3Tr

(
AT

vK vAv

)}
(8)

When predicting the unknown instance label set, we add
weights to consider the contribution of each view to the label pre-
diction according to the literature [11,42]. After the optimization
process is completed, the update rule for the contribution weight
of each view is as follows:

θv =
λ4 +

∑m
v=1 Q v − mQ v

mλ4

v =
K (train)

v Av − U v

2
F

(9)

Given the test sample X̂ , we calculate the corresponding ker-
nel function mapping κ

(̂
xi, x̂j

)
, combined with the prediction

vector corresponding to each view, and our final prediction func-
tion is expressed as:

Y pre =

m∑
v=1

θvK (test)
v Av (10)

Then the final predicted label vector is expressed as: Ŷ =

ign
(
Y pre

)
.

MVLD not only considers the learning of view-specific labels
but also considers the measurement of the dependency relation-
ship between it and each view feature. The two are closely related
before and after to improve the performance of the approach
more effectively. Besides, in the prediction stage, the combined
results of each view are obtained like ensemble learning, which
makes the algorithm performance more robust. The following
experiments will confirm these advantages.

3.5. Optimization

MVLD involves a two-stage optimization. This section will give
a detailed introduction to the two-stage optimization process.

The first stage: Problem (5), involves the optimization of two
variables, U v and ωv , and it is tough to optimize these two
variables simultaneously. We use alternating optimization tech-
niques to optimize the objective function, thereby updating each
variable.

When ωv is fixed, the gradient of U v can be obtained as:

∇U v = (I + λ1ωvLv)U v − Y (11)

hen the closed form solution is:

= I + λ ω L −1Y (12)
v ( 1 v v)

5

When U v is fixed, update ωv as follows:

v =

1
Tr

(
Uv

TLvUv

)∑m
v=1

1
Tr

(
Uv

TLvUv

) (13)

The second stage: the optimization of Eq. (8). We can calculate
he gradient w.r.t Av as follows:

∇Av = K vK v
TAv − K vV v + λ2K vAv − λ3K T

vGvK vAv (14)

When we set the derivative w.r.t Av to zero, we have the
ollowing formula:

v =
(
K v

T
+ λ2I − λ3GvK v

)−1U v (15)

Given the above process of optimizing and predicting the
odel, we summarize the main steps of MVLD in Algorithm 1.

Algorithm 1: Multi-view multi-label classification
method via learning View-specific label and Label-feature
Dependence maximization

Input: Training data matrix: {Xv}
m
v=1, Y ∈ {−1, 1}N×q;

Trade-off parameters: λ1, λ2, λ3, and λ4;
Kernel function parameter: σ ;
Number of iterations: t;
Output: Predicted label matrix: Y pre;

1 Randomly initialize U v , ωv and θv;
2 The first stage:
3 for j = 1, 2, · · · , t do
4 for v = 1, 2, · · · ,m do
5 Construct the affinity graph for the v-th view by

Eq. (4) and calculate Lv = Dv − Sv;
6 Update U v by Eq. (12);
7 Update ωv by Eq. (13);
8 if convergence then
9 break;

10 The second stage:
11 for v = 1, 2, · · · ,m do
12 Update Av by Eq. (15);
13 Update θv by Eq. (9);
14 Calculate the predicted label vector Y pre by Eq. (10);

3.6. Complexity analysis

The time complexity of MVLD is mainly controlled by step 3,
step 8, step 11, step 12, and step 14.

In the first stage, the time complexity of learning U v , ωv , and
constructing Lv for each iteration is O

(
N3

+ N2q
)
, O

N2q + Nq2
)
, and O

(
N2d

)
. The overall complexity of the first

tage is O
(
t
(
N3

+ N2q + N2d + Nq2
))
, where t is the total num-

ber of iterations. Besides, the convergence speed of our model is
quite fast, so t can be very small.

In the second stage, the overall time complexity of calculat-
ing Av and θv is O

(
N3

+ N2q
)
. Since N ≫ m normally holds,

the overall time complexity of MVLD can be further reduced to
O

(
t
(
N3

+ N2d
)
+ N3

)
.

4. Experimental content

In this section, we conduct a large number of experimental
studies to evaluate the effectiveness of MVLD. We compare 5
state-of-the-art approaches on 7 real-world MVML benchmark
datasets based on 6 widely used evaluation metrics. Furthermore,
the classical multi-label learning method MLkNN is selected and
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Table 2
MVML data sets.
Views Emotions Yeast Pascal07 Corel5k Espgame Iaprtc12 mirflickr

1 Rhythmic attributes
(8)

Genetic expression
(79)

DenseSift
(1000)

DenseHue
(100)

DenseHue
(100)

DenseHue
(100)

DenseHue
(100)

2 Timbre attributes
(64)

Phylogenetic profile
(24)

HarrisSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

3 – – Gist(512) Gist(512) Gist(512) Gist(512) Gist(512)
4 – – HSV(4096) HSV(4096) HSV(4096) HSV(4096) HSV(4096)
5 – – RGB(4096) Lab(4096) Lab(4096) Lab(4096) Lab(4096)
6 – – Tags(804) RGB(4096) RGB(4096) RGB(4096) RGB(4096)
Domain Music Biology Image Image Image Image Image
The number of labels 6 14 20 260 268 291 457

The number of samples 593 2417 9963 4999 20770 19627 25000
Table 3
The experimental results (mean ± std) of each comparison approaches on 6 evaluation metrics. ↓ (↑) means that the smaller (larger) the value, the better the
erformance.
Dataset AP(↑)

MLkNN SIMM ICM2L iMvWL VLSF CDMM MVLD

Emotions .718 ± .021 .780 ± .027 .578 ± .022 .584 ± .015 .621 ± .029 .790 ± .019 .803 ± .020
Yeast .762 ± .009 .765 ± .016 .708 ± .014 .704 ± .011 .631 ± .006 .781 ± .009 .785 ± .006
Pascal07 .464 ± .007 .781 ± .004 .460 ± .025 .660 ± .013 .767 ± .007 .759 ± .006 .767 ± .004
Corel5k .349 ± .008 .534 ± .006 .258 ± .004 .274 ± .003 .476 ± .011 .545 ± .007 .548 ± .003
ESPgame .259 ± .003 .378 ± .013 .219 ± .013 .237 ± .002 .336 ± .003 .400 ± .003 .396 ± .005
Iaprtc12 .340 ± .004 .401 ± .017 .204 ± .000 .242 ± .001 .382 ± .002 .432 ± .004 .429 ± .005
Mirflickr .076 ± .001 .142 ± .009 .093 ± .001 .094 ± .005 .091 ± .003 .102 ± .002 .103 ± .002

Dataset CV(↓)

MLkNN SIMM ICM2L iMvWL VLSF CDMM MVLD

Emotions .376 ± .020 .307 ± .014 .530 ± .036 .506 ± .014 .441 ± .022 .304 ± .018 .296 ± .008
Yeast .452 ± .006 .450 ± .004 .503 ± .006 .494 ± .009 .601 ± .008 .426 ± .008 .424 ± .014
Pascal07 .319 ± .003 .109 ± .003 .308 ± .048 .189 ± .015 .110 ± .001 .111 ± .003 .110 ± .003
Corel5k .290 ± .004 .148 ± .006 .334 ± .000 .286 ± .004 .187 ± .009 .179 ± .011 .177 ± .006
ESPgame .437 ± .003 .308 ± .012 .479 ± .001 .447 ± .004 .365 ± .005 .337 ± .005 .320 ± .000
Iaprtc12 .376 ± .005 .270 ± .019 .497 ± .001 .435 ± .003 .327 ± .002 .284 ± .006 .275 ± .002
Mirflickr .386 ± .004 .306 ± .016 .499 ± .002 .492 ± .007 .344 ± .005 .332 ± .002 .326 ± .006

Dataset HL(↓)

MLkNN SIMM ICM2L iMvWL VLSF CDMM MVLD

Emotions .262 ± .010 .246 ± .008 .375 ± .015 .395 ± .011 .293 ± .007 .207 ± .014 .205 ± .013
Yeast .196 ± .005 .207 ± .005 .278 ± .008 .269 ± .005 .258 ± .004 .189 ± .006 .184 ± .006
Pascal07 .072 ± .001 .046 ± .001 .115 ± .003 .086 ± .002 .050 ± .000 .049 ± .001 .046 ± .001
Corel5k .013 ± .000 .011 ± .000 .022 ± .000 .022 ± .000 .013 ± .000 .011 ± .000 .011 ± .000
ESPgame .017 ± .000 .017 ± .000 .029 ± .000 .028 ± .000 .017 ± .000 .018 ± .000 .017 ± .000
Iaprtc12 .019 ± .000 .019 ± .000 .032 ± .000 .031 ± .000 .019 ± .000 .019 ± .000 .019 ± .000
Mirflickr .006 ± .000 .006 ± .000 .013 ± .000 .013 ± .000 .006 ± .000 .006 ± .000 .006 ± .000
Dataset OE(↓)

MLkNN SIMM ICM2L iMvWL VLSF CDMM MVLD

Emotions .359 ± .041 .310 ± .056 .530 ± .030 .521 ± .021 .539 ± .073 .304 ± .034 .272 ± .050
Yeast .233 ± .017 .225 ± .028 .235 ± .024 .292 ± .020 .343 ± .015 .211 ± .013 .210 ± .015
Pascal07 .585 ± .012 .261 ± .010 .589 ± .002 .397 ± .021 .290 ± .014 .308 ± .011 .285 ± .008
Corel5k .602 ± .017 .363 ± .011 .697 ± .007 .687 ± .003 .438 ± .017 .362 ± .006 .357 ± .012
ESPgame .650 ± .008 .476 ± .022 .713 ± .030 .674 ± .000 .533 ± .011 .465 ± .009 .474 ± .010
Iaprtc12 .535 ± .006 .447 ± .021 .720 ± .005 .624 ± .002 .465 ± .006 .439 ± .007 .446 ± .008
Mirflickr .905 ± .003 .865 ± .006 .908 ± .004 .887 ± .003 .891 ± .003 .869 ± .004 .866 ± .005

Dataset RL(↓)

MLkNN SIMM ICM2L iMvWL VLSF CDMM MVLD

Emotions .255 ± .020 .178 ± .024 .443 ± .013 .414 ± .012 .330 ± .022 .174 ± .013 .163 ± .015
Yeast .170 ± .006 .165 ± .008 .215 ± .011 .214 ± .008 .320 ± .006 .151 ± .008 .150 ± .006
Pascal07 .256 ± .004 .068 ± .003 .241 ± .040 .138 ± .011 .070 ± .002 .070 ± .002 .069 ± .002
Corel5k .127 ± .003 .059 ± .002 .149 ± .002 .130 ± .003 .076 ± .004 .069 ± .005 .068 ± .003
ESPgame .181 ± .002 .120 ± .006 .203 ± .002 .190 ± .002 .142 ± .003 .124 ± .002 .119 ± .002
Iaprtc12 .135 ± .002 .089 ± .007 .189 ± .001 .165 ± .002 .106 ± .001 .089 ± .002 .088 ± .001
Mirflickr .224 ± .003 .222 ± .013 .288 ± .001 .285 ± .009 .197 ± .003 .184 ± .003 .179 ± .003
Dataset SA(↑)

MLkNN SIMM ICM2L iMvWL VLSF CDMM MVLD

Emotions .132 ± .040 .233 ± .032 .106 ± .097 .009 ± .000 .037 ± .017 .294 ± .043 .280 ± .037
Yeast .177 ± .016 .105 ± .019 .004 ± .002 .008 ± .004 .074 ± .009 .207 ± .011 .222 ± .008
Pascal07 .028 ± .006 .394 ± .006 .038 ± .010 .099 ± .012 .356 ± .003 .359 ± .013 .389 ± .013
Corel5k .016 ± .002 .032 ± .007 .000 ± .000 .001 ± .001 .034 ± .008 .069 ± .010 .046 ± .010
ESPgame .002 ± .001 .009 ± .001 .000 ± .000 .000 ± .000 .007 ± .002 .013 ± .001 .013 ± .000
Iaprtc12 .006 ± .003 .002 ± .001 .000 ± .000 .000 ± .000 .005 ± .001 .018 ± .002 .026 ± .002
Mirflickr .252 ± .007 .250 ± .007 .000 ± .000 .000 ± .000 .207 ± .012 .198 ± .009 .203 ± .008
6
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Fig. 2. The Nemenyi test result of each evaluation metric at the significance level of .05.
r
n

eneralized to the MVML problem to evaluate the effectiveness
f MVLD empirically.

.1. Data sets

We conduct experiments on several different domain data
ets, and Table 2 details the methods we selected for multiple
iew features of different data, such as image color view, texture
iew, and shape view in the image data set. For each algorithm,
e use five-fold cross-validation for experiments, and they use
he same random seed, which is similar to our previous work, so
ome of the experimental results in this paper are the same. To
educe statistical variability, we averaged ten independent repli-
ates of all experimental results and reported the mean results
ith standard deviations(std). For the experiments involved in
his paper, run under the hardware environment of Windows
0, Intel(R) Core(TM) i7-7700K, 48 GB RAM, and use a consistent
andom seed to divide the dataset.

.2. Comparison method

1. MLkNN1: Concatenate all views to transform the MVML
problem into ML learning problem.

2. SIMM2: MVML algorithm using shared subspace develop-
ment and view-specific information extraction. The number of

1 code: http://palm.seu.edu.cn/zhangml.
2 code: http://palm.seu.edu.cn/zhangml.
7

hidden layers is 64. The parameter α is fixed to 1, and β is to
searched in the range {0.1, 0.01, 0.001, 0.0001}.

3. VLSF3: An MVML learning algorithm for developing view-
label-specific features. The search range of the parameters in-
volved is recommended according to the literature [25].

4. ICM2L4: An MVML learning method based on extraction
of individuality and common information. The search range of
the parameters involved is recommended according to the liter-
ature [32].

5. iMvWL5: Incomplete multi-View weak-label learning. The
complete view information can be obtained in this article. The
search range of the parameters involved is recommended accord-
ing to the literature [30].

6. CDMM6: Consistency and diversity neural network MVML
learning. The parameters search range is given according to the
literature [11].

7. MVLD: MVML learning via view-specific label and label-
feature dependence maximization. The search range of non-
negative regularization parameters λ1 and λ2 are

{
10−7, 10−6,

. . . , 10−1}. The search range of non-negative regularization pa-
ameters λ3 is

{
10−5, 10−4, . . . , 101}. The search range of non-

egative regularization parameters λ4 is
{
103, 104, . . . , 106}. The

3 code: https://jiunhwang.github.io.
4 code: http://www.sdu-idea.cn/codes.php?name=ICM2L.
5 code: http://www.sdu-idea.cn/codes.php?name=iMVWL.
6 code: https://github.com/chengyshaq/CDMM.

http://palm.seu.edu.cn/zhangml
http://palm.seu.edu.cn/zhangml
https://jiunhwang.github.io
http://www.sdu-idea.cn/codes.php?name=ICM2L
http://www.sdu-idea.cn/codes.php?name=iMVWL
https://github.com/chengyshaq/CDMM
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Fig. 3. Illustration of the real-time prediction of the MVLD algorithm for some test sample images from the Corel5k dataset. Labels in black fonts represent the
abels where the MVLD and ground-truth annotations match each other. Labels in red fonts represent those annotations predicted by MVLD but not present in the
orresponding ground truth. Labels in green fonts represent annotations present in the ground truth but not predicted in MVLD.
a

earch range of the kernel function parameter σ is {0.5, 1.0,
5.0, 10}.

For the method using k-NN technology, k is fixed to 10 based
on experience. The parameters of all the above techniques are
selected through five-fold cross-validation on the training set.

4.3. Evaluation metrics

Evaluation metrics: We measure the performance of each
method from six widely used evaluation metrics: Average Pre-
cision (AP), Coverage (CV), Hamming Loss (HL), One-Error (OE),
Ranking Loss (RL), and Subset Accuracy (SA). The smaller the
value of CV, HL, OE, and RL, the better the performance. The larger
the value of AP and SA, the better the performance. More detailed
information on these evaluation metrics is provided in [1].

4.4. Experimental results and analysis

We report the experimental results of different approaches on
7 MVML data sets in Table 3. The best experimental results are
bolded in red, and the second-ranked results are shown in blue.

Friedman test [43] is a widely used strategy for comparing the
differences between multiple methods and is usually used for
statistical significance analysis. Table 4 summarizes the Friedman
statistical FF values of all evaluation metrics and the critical value
at the 0.05 significance level.

Observing Table 4 finds that the FF statistics are all greater
than the critical value, which obviously rejects the null hypothesis
that the performance of the comparison methods is equivalent.
8

Table 4
Summary of the Friedman statistics FF (k = 7, N = 7) of each evaluation metric
nd the critical value of F(k: Comparing methods; N: Data sets).
Metric FF Critical value (α = 0.05)

Average precision 26.6667

2.3638

Coverage 27.7377
Hamming loss 14.3762
One-Error 24.0438
Ranking loss 31.5034
Subset accuracy 13.6234

Therefore, we use the Nemenyi test [43] as a posterior to illustrate
the significant differences between the various methods.

Fig. 2 shows the CD on each evaluation metric among the
various comparison methods. For each comparison method, its
average ranking is marked as the lower (better) ranking along
the axis. If the average ranking difference between the control
method and the comparison method is within a CD value, connect
them with a solid red line. Based on the experimental results, we
have the following conclusions:

1. As shown in Fig. 2, in each evaluation metric, no com-
parison method has significantly better performance than
MVLD. Besides, among the six evaluation metrics, the av-
erage ranking of MVLD in the five evaluation metrics is
the best, except that it is slightly worse than SIMM in
CV. An intuitive reason is that SIMM can leverage the
consensus information of all views by utilizing the shared
subspace, so SIMM achieves better results on the CV than
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Fig. 4. Results of 6 evaluation metrics of MVLD and its variant algorithms on 4 MVML data sets.
MVLD. The use of subspace information can undoubtedly
improve the performance of the model, but in the non-
aligned view learning problem, the subspace method is no
longer applicable because each view cannot communicate
information.

2. Compared with CDMM, a kernel function method, MVLD
has achieved better performance in each evaluation metric.
Compared with linear methods iMvWL, ICM2L, and VLSF,
9

MVLD has excellent performance. Among them, MVLD is
significantly better than iMvWL and ICM2L in terms of per-
formance. It can be seen that in the face of heterogeneous
data, the general linear method cannot obtain better per-
formance, which verifies the effectiveness of my extension
of the kernel method to solve the MVML problem.

3. Compared with the degradation strategy MVML method
MLkNN, MVLD has achieved excellent performance in every
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Fig. 5. Parameter sensitivity analysis of MVLD on AP(↑) and RL(↓) based on Yeast data set.
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evaluation index. It can be seen that the method of directly
concatenating will ignore the difference in physical mean-
ing among heterogeneous views and will cause the data
dimension to be too large and easily lead to overfitting.

4. As shown in Table 3, the proportion of MVLD ranked first in
all results is 54.7%, and the ratio of ranking second is 4.5%.
On the one hand, MVLD achieves superior performance
on various datasets, verifying that MVLD can be applied
to different types of multi-view data. On the other hand,
the standard deviation of MVLD in each evaluation metric
is also smaller, which shows that it has relatively stable
experimental results. It is not difficult to find that MVLD
has advantageous robustness in these two aspects.

In Fig. 3, the black font labels represent the labels where the
VLD and ground-truth annotations match each other. Labels in

ed font represent those annotations predicted by MVLD but not
resent in the corresponding ground truth annotations. Labels in
reen font represent labels present in the ground truth but not
redicted by MVLD. Observing Fig. 3 shows that MVLD is effective,
hich can correctly predict the labels of most images. MVLD can

earn some unlabeled correct label information in the original
round-truth labels, which is crucial and practical in practical
pplications because we currently cannot obtain many absolutely
ccurately labeled images. Additionally, we can also observe the
rawback of MVLD, which cannot deal with the problem of class
abel imbalance very well, resulting in some rare label classes
10
eing ignored during prediction, limiting the classification accu-
acy of MVLD. In future work, we will further study this issue.

.5. Effectiveness of MVLD via component analysis

To verify the effectiveness of MVLD, we conducted a com-
onent analysis of MVLD on the Emotions, Yeast , Corel5k, and

Pascal07 datasets. We mainly analyze the influence of view-
specific labels and the interdependence of labels and features on
MVLD. To this end, we propose three variants of MVLD: MVLD-V
means ignoring the effect of view-specific labels; MVLD-D means
ignoring the impact of the interdependence of labels and features;
MVLD-W means ignoring the influence of different contributions
of views. Fig. 4 shows the experimental results of these three
variant algorithms and MVLD on six evaluation metrics.

From the results of each sub-graph in Fig. 4, it can be observed
that the results of MVLD on multiple evaluation metrics are
better than its different variant algorithms. Specifically, MVLD
achieves better results than the MVLD-V model in most cases,
which further confirms the effectiveness and feasibility of assign-
ing a specific label to each view for MVML learning. The results
compared with MVLD-D also verify that label-feature dependence
learning can effectively improve the performance of the classi-
fier. Intuitively, MVLD-V has a better effect than MVLD-D, which
shows that the method that considers view-specific feature learn-
ing has a more significant contribution to algorithm performance
improvement. In general, these results confirm the rationality and
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ffectiveness of our model on view-specific feature learning and
abel-feature dependence and also clarify our motivation.

.6. Parameter sensitivity analysis

MVLD has 4 main parameters λ1, λ2, λ3, and σ . λ1 controls
he structural differences among views. λ2 controls the weight
oefficient. λ3 controls label and feature dependencies. σ is the
arameter of the RBF kernel function. To verify the sensitivity of
he parameter, we tested it on the Yeast data set and reported
he change results of each parameter on the AP and RL evaluation
etrics in Fig. 5. Specifically, when testing, we change the value
f one of the variables within a given interval, while the other
ariable values are given in advance (λ1 = 10−1, λ2 = 10−3,
3 = 10−3, σ = 0.5). For the parameters λ1 and λ2 we set
he range to

{
10−7, 10−6, . . . , 10−1}, and for the parameters, λ3

nd σ parameter ranges are set to
{
10−5, 10−4, . . . , 101} and

0.5, 0.6, . . . , 1.1}.
Although the value of the regularization parameter is sensitive

o MVLD performance, in most cases, more stable results can
e obtained so that we can achieve satisfactory results in real
pplications.

1. From Fig. 5(a), we can see that the performance of MVLD
is relatively better when the λ1 value is around 10−1. And
the performance drops significantly from 10−1 to 10−2.
 1

11
This result further confirms the role of view-specific labels
learning.

2. From Figs. 5(b) and 5(c), we can observe that when the λ2
and λ3 values are around 10−2, and 10−3, respectively, the
performance of MVLD is relatively stable. Note that when
the value of λ2 continues to increase, the performance of AP
and RL increases, at 10−5 it proliferates, and at 10−2 it starts
to rise slowly. When the value of λ3 initially increases,
the performance is stable, but after 10−2, the performance
of MVLD drops sharply, and then there is a small im-
provement. It can be seen that MVLD is more sensitive to
selecting the regularization parameter λ3. The large per-
formance change also shows that considering the label-
feature dependence has a certain significance for improving
algorithm performance.

3. We observe Fig. 5(d) and find that as the value of σ in-
creases, the performance decreases, but the overall de-
crease is not significant.

.7. Further analysis

To clarify the convergence of the MVLD in the first stage of
iew-specific label learning, we report the convergence curve of
he first stage of it on the Pascal07, Core15k, Iaprtc12, andMirflickr
atasets in Fig. 6. It can be seen that MVLD tends to converge after
0 iterations in most cases.
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Fig. 7. View weights learned by MVLD.
To analyze the impact of the contribution of each view, in
ig. 7, we report the contribution weights of each view on
ore15k, Pascal07, Iaprtc12 and Mirflickr data set(the larger the
alue, the higher the contribution). Observe Fig. 7 and find that
he contribution weights of DenseSift, HSV, and RGB are greater
han Gist, LAB, and DenseHue. These comparisons prove the
ffectiveness of MVLD for ensemble learning in prediction.
12
5. Conclusion

This paper discussed how to mine the view-specific labels
and label-feature dependencies of each heterogeneous view to
achieve effective MVML classification. For this reason, we propose
a two-stage MVML learning method named MVLD, where the
first stage allocates a dedicated label set for each heterogeneous
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iew, and the second stage captures the dependency relation-
hip between labels and features in a principled way integrated
lassification. First, use the topological structure between differ-
nt view features to construct a view-specific label set. Then, a
ulti-label classification model is constructed using the interde-
endence between labels and features, and the kernel method
s utilized to extend the model to a nonlinear approach. Finally,
he prediction results of all classifications are integrated with
he learned contribution weight to obtain the final prediction
esults. Experiments on multiple benchmark MVML data sets
how that the MVLD model is superior to competing solutions.
he experimental results of component analysis of MVLD verify
he effectiveness of MVML learning by using view-specific labels
nd label-feature dependence.
There are two main drawbacks in this paper, and one is that

he results of view-specific labeling and classification obtained
y the two-stage method we adopt are often sub-optimal. The
ther is that a single kernel function is used for multi-view
ernel mapping, ignoring the problem that the performance of
he kernel method is highly related to the selection of the kernel
unction. In future work, we will study the multi-kernel-based
VML learning problem and are devoted to proposing novel
ethods for joint learning of view-specific labels and MVML
lassification models.
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