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a b s t r a c t

In multi-label learning, in order to improve the accuracy of classification, many scholars have
considered the relationship between features and features, features and labels or labels and labels,
but how to combine the correlation among them is rarely studied. Based on this, this paper proposes
a multi-label learning algorithm with kernel extreme learning machine autoencoder. Firstly, the label
space is reconstructed by using the non-equilibrium labels completion method in the label space.
Then, the non-equilibrium labels space information is added to the input node of the kernel extreme
learning machine autoencoder network, and the input features are output as the target. Finally, the
kernel extreme learning machine is used for classification. Our method implements the information
fusion between features and features, between labels and features, and between labels and labels.
Compared with the traditional autoencoder network, the extreme learning machine autoencoder
has no iterative process, which reduces the network training time and improves the classification
accuracy. The experimental results of the proposed algorithm in the opening benchmark multi-label
data sets show that the KELM-AE algorithm has some advantages over other comparative multi-label
learning algorithms and the statistical hypothesis testing and stability analysis further illustrate the
effectiveness of the proposed algorithm.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In multi-label learning [1], a single instance is associated with
multi-label, and a valid model is trained through the training set
to effectively predict the set of labels belonging to unknown in-
stances. Many scholars have proposed a lot of multi-label learning
algorithms. For example, the BR [2] (binary relevance) algorithm,
the LP (label power set) algorithm, etc., the methods solve the
multi-label problem by increasing the number of classifiers or
the types of the label but affect the efficiency of the classifier
to some extent. Back-propagation for multi-label learning BP-
MLL [3] (rank-propagation for multi-label learning) introduces
the ranking loss factor and the MLKNN [4] algorithm used the
maximized a posteriori probability (MAP) to solve the multi-label
learning prediction problem, the performance of them increases
the complexity of its calculation although the classification was
improved.

The relationship between labels in the real world are often
not independent of each other, and there is a certain correlation
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between them. For the correlation between labels, many schol-
ars have proposed the correlation algorithm and achieved good
results. For example, the RankSVM [5] uses the maximum inter-
val criteria strategy to adapt to multi-label learning. During the
modeling process, the SVM classifier is constructed for the sorting
loss between relevant labels and irrelevant labels corresponding
to samples. But the time consumption is relatively large because
a large number of variables need to calculate.

At the same time, as an effective measure of uncertainty, in-
formation entropy [6] and other relevant information theory have
been widely used in the research of label correlation. Based on
this theory, Zhang [7] et al. proposed a multi-label classification
algorithm based on correlation information entropy. On the basis
of the RAkEL(random k-label sets) algorithm, it used the rele-
vant information entropy to measure the correlation between the
labels to improve the performance of multi-label classification.
Lee [8] et al. proposed a new multi-label learning method based
on the CC(classifier chains) algorithm. Using the directed acyclic
graph to model the correlation of labels, and using conditional
entropy to design a multi-label learning method to maximize
the correlation between labels, these methods achieved good
results. It has achieved better results by using the information en-
tropy theory to measure the correlation between labels. However,
these methods basically only calculated the mutual information
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between two labeled labels and then measure the interaction
between labeled labels by mutual information. It can be seen that
using this kind of basic label confidence matrix to measure the
relevant information between labels only consider the mutual
influence between labeled objects but ignoring the influence of
the labeled of unlabeled labels on the quality of label sets and
the impact of known labels on unlabeled labels.

Besides, a method of reconstructing information of a feature
space using label information was also widely used. The LIFT [9]
method first used the K -means clustering algorithm to cluster
the positive and negative examples of each labels and calcu-
lated the distance between the sample and the cluster center
to generate the exclusive features of each label, thus obtained
a new training set. Based on this training set, binary relevance
classification learning was performed for each labels. However,
the LIFT method did not consider labels correlation, some scholars
have proposed a joint learning of label-specific features and label
correlations. Zhang [10] et al. account the correlation among
labels by constructing additional features. Huang et al. [11] pro-
posed to learn the label-specific features and shared features
by using pairwise label correlations to distinguish each cate-
gory labels, and then constructed a multi-label classifier on the
low-dimensional data representations composed of these learned
features. Zhang [12] et al. proposed a multi-label learning with
feature-induced labeling information enrichment(MLFE), which
changed the structural information in the feature space by en-
riching the label information of the multi-label samples. Based
on tailored multiple regression method, the classification effect
of the algorithm can be improved with rich labels information
from the training samples. In the multi-label learning data set,
the number of labels in the label data set is generally large,
but the average number of labels and the labels density are not
high for each object. This phenomenon is also consistent with
common sense: the labeled labels of an object should not be
larger than the unlabeled labels, otherwise, the multi-label of the
object will lose its meaning. It is undeniable that there may be
a lot of valuable information in the unlabeled labels, just as it
is about the abnormal research. For the purpose, a method of
non-equilibrium labels completion is introduced to describe the
relationship between labels.

It is not difficult to find that the classification performance
of the algorithm is improved by the construction of the features
with the labels and the labels-to-labels relationship. In recent
years, a large number of unsupervised learning methods have
been applied in the field of data mining. Based on graph basis
system (GBS) [13] multi-view clustering method was proposed
to tackle the limitations of the existing graph-based. Further,
a clustering method based on the local linear embedding(LLE)
and Laplace feature mapping(LEE) method(L3E-M2VC) [14] were
proposed to deal with multi-task multi-view problems. The Au-
toencoder neural network [15] was an unsupervised learning
paradigm that automatically learns features from unlabeled data.
Autoencoder has been widely used in image classification [16].
The autoencoder neural network was a class of models which
aim to map the input to a latent space and map it back to the
original space, with low reconstruction error as its objective.
But the current training process of autoencoder neural network
involved lots of iterations. The ELM algorithm, which was pro-
posed by Huang [17,18] as a simple and efficient single hidden
layer feed-forward neural network learning algorithm, does not
need any iterative adjustment to the network weight and bias
in the training process. Compared with the traditional neural
network algorithm, its training speed is fast. In this regard, L.L.C.
Kasun [19] et al. put forward an ELM-AE classification algorithm
which was a novel method of neural network. ELM-AE can repro-
duce the input signal as well as autoencoder. Based on this, this

paper proposes a kernel extreme learning machine autoencoder
for multi-label learning algorithm(KELM-AE). We use a two-layer
KELM module as the base model and the first KELM as a autoen-
coder block and adds labels node information in the input layer,
and the output layer outputs features that contain feature and
labels relationships. The second KELM model serves as classifica-
tion module, is used during the classification process while the
labels space uses the non-equilibrium labels completion matrix
algorithm. The experimental and statistical hypothesis testing of
the algorithm on multiple published multi-label data sets proves
that the algorithm has a certain validity, and it is also confirmed
that the combination of feature space reconstruction and label
correlation can improve the rationality of algorithm performance.

The rest of the paper is organized as follows. Section 2 gives
some basic notions related to multi-label learning and the rough
entropy. Section 3 introduces the modeling of the non-
equilibrium matrix. Section 4 introduces the modeling of KELM.
Our proposed method for the multi-label classification of KELM-
AE is proposed in Section 5. In Section 6, experimental results
of the KELM-AE in opening multi-label data sets shows that
our algorithm is effective and statistical hypothesis tests further
prove our method in Section 6 too. In the last section, we sum up
what has been discussed and point out further research.

2. The multi-label learning and rough entropy

2.1. The multi-label learning and traditional entropy

Let X = [x1, . . . , xN ]
T

∈ RN×d be the d-dimensional input
feature space, where N denotes the number of samples. xi ∈ Rd

denotes the feature vector corresponding to the ith sample; Y =

[y1, . . . , yN ]
T

∈ RN×k denotes the label matrix corresponding to
the sample, where k denotes the number of labels in the data;
yi = {1, −1}k denotes the binary label indicator vector corre-
sponding to the ith sample. Therefore, the multi-label training
data set containing N samples is:

D = {xi,Yi |1 ≤ i ≤ N } ⊂ Rd
× {+1, −1}k (1)

Definition 1 ([6,7,20]). Suppose the set A = {a1, . . . , am}, and p(ai)
denotes the prior probability of the element ai :

H(A) = −

n∑
i=1

p(ai)log2p(ai) (2)

Then H(A) is the information entropy of the set A, and the
larger value of it, the more uncertainty of the set.

Definition 2 ([6,7,20]). Suppose the set A = {a1, . . . , an} and the
set B = {b1, . . . , bn}, then the conditional entropy of the set B
under the given constraints of the set A is:

H(B |A ) = −

m∑
i=1

n∑
j=1

H(bj |ai ) (3)

where H(bj |ai ), the conditional information, is employed to de-
scribe the uncertainty of the elementbj with the appearing ele-
ment ai. The larger the value, the more uncertainty between ai
and bj, and vice versa:

H(bj |ai ) = −p(aibj)log2p(bj |ai ) (4)

The conditional entropy is thus employed to describe the
uncertainty of the set B with the appearing set A.

Meanwhile, the traditional entropy is often used in the multi-
label learning algorithms and it has a high complexity of com-
putation because it has no nature of complement. Therefore, a
new definition about the rough entropy will be introduced in this
paper.
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2.2. A new definition about the rough entropy

An information system is usually denoted as triplet S =

(U, A, f ), which is called a decision table, where U is the universe
which consists of a finite set of objects, A is the set of attributes.
With every attribute a ∈ A, set of its values Va is associated. Each
attribute a determines an information function f : U → Va such
that for any a ∈ A and x ∈ U , f (x) ∈ Va. Each non-empty subset
P ⊆ A determines an indiscernible relation:

Rp = {(x, y) : ∀α ∈ P, fa(x) = fa(y), x, y ∈ U} (5)

Rp is called a equivalence relation and partitions U into a
family of a disjoint subsets U/Rp called a quotient set of U:

U/Rp = {X1, . . . , Xn} (6)

In the traditional entropy definition, log2
1

p(Xi)
is used to mea-

sure the information quantity of the equivalence classes Xi. Sim-
ilarly, we construct the definition of information quantity ex-
pressed by equivalence classes based on rough set theory as
follows:

I(Xi) = 1 −
|Xi|

|U |
(7)

|·| represents the cardinality of the set element and 0 ≤ I(Xi) ≤

1 −
1

|U |
.

Definition 3 ([20]). An information system S = (U, A, f ), p ⊆

A,U/Rp = {X1, . . . , Xn}, the information entropy of attributes P
is defined as follows:

E(p) = E(X) =

n∑
i=1

|Xi|

|U |
I(Xi) =

n∑
i=1

|Xi|

|U |
(1 −

|Xi|

|U |
) =

n∑
i=1

|Xi|

|U |

|Xi|
C

|U |

(8)

In which C represents the complement. It is easy for E(X) to
be a rough entropy and 0 ≤ E(X) ≤ 1 −

1
|U |

.

3. The modeling of the non-equilibrium label completion ma-
trix

The number of unlabeled items of a sample in the real world is
much larger than that of annotated ones, as seen in the example
that a picture with known labels including greenmountains and
clearwater is more probable to contain unlabeled forests, rather
than unlabeled deserts or sea. We have found in many cases
that researchers calculate the conditional information between
annotated and unlabeled elements in each label set of the sample
by applying Eq. (4), to obtain the basic label confidence matrix.
Suppose the matrix of training samples Y = [y1, . . . , yN ]

T
∈ RN×k

and yi = {1, −1}k. According to Eq. (4) of traditional entropy, we
have:

aij =
1

H(lj |li )

where li and li denote that the value of yi is 1, and −1; i =

1, . . . , k, j = 1, . . . , k and i ̸= j.
The information entropy is used to measure the relationship

between the unknown labels and the known labels weight, but
the traditional information entropy does not have the comple-
mentary property, and the calculation method is more compli-
cated. The relationship between unknown labels and known la-
bels is complementary, therefore the measurement of new rough
information entropy is undoubtedly more accurate. According to

Eq. (7) of new rough information entropy, the new basic label
confidence matrix can be redefined as follows:

newaij =
1

I(lCj |li )
, newbij =

1
I(lj

⏐⏐lCi )
Therefore, newaij the new basic label confidence matrix fo-

cuses on the confidence of known labels to unknown ones, while
newbij the confidence of unknown labels to known ones, and it di-
rectly affects the quality of label sets. Since most multi-label data
sets are currently artificially labeled, what can be confirmed is
an unknown sample may directly affect the quality of multi-label
data sets. The paper therefore introduces α, the non-equilibrium
parameter and proposes the algorithm of the non-equilibrium
labels confidence matrix (NeLCM) based on weighted calculation
of decreasing the basic label confidence matrix (BCLM) of newaij
and increasing that of newbij:

Confij = −α × newaij + (1 − α) × newbij (9)

This construction method is a high-order strategy. We suggest
the range of the non-equilibrium parameter 0 ≤ α ≤ 0.5.

Inspired by the idea of labels propagation dependency [21],
the non-equilibrium label completion matrix is defined as fol-
lows:
∧

Y = Conf × Y (10)

Introduced non-equilibrium parameters, the algorithm of non-
equilibrium label confidence matrix is calculated as follows:

Algorithm 1 Non-equilibrium Labels Confidence Matrix
(NeLCM)

Input: Y, the matrix of training samples, and α, the unbalanced
parameter

Output:
∧

Y, NeLCM
1: Y = {Yi |i = 1, · · · , k }. The label set of the training set.
2: for each li, lj do
3: if i ̸= j then
4: Calculate newaijand newbij by employing Eq. (7).
5: elsei = j
6: newaij = newbij = 0
7: end if
8: Normalize the matrix a, b by row and obtain the corre-

sponding matrix a, b.
9: if i = j then

10: newaij = newbij = 1/*Set the diagonal element as 1.;
11: end if
12: Obtain the confidence matrix Conf by employing Eq. (9).
13: end for
14: non-equilibrium labels confidence matrix

∧

Y = Conf × Y.
15: return

∧

Y

4. The modeling of kernel extreme learning machine with
autoencoder

4.1. The theory of kernel extreme learning machine

The ELM algorithm is an effective single-hidden layer feed
forward neural networks learning algorithm. The learning param-
eters of the hidden layer in the ELM algorithm network structure
are randomly selected that only necessary to set the number of
hidden layer network neurons. Finally, the output weight of the
hidden layer is obtained by the least squares method, and no
iteration is required for the network weight and offset in the
process. Therefore, compared with the traditional neural network
algorithm, the ELM algorithm has the advantages of fast training
speed and strong generalization ability.
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Before analyzing the two phases of ELM, the following formal
definitions need to be made: For N distinct sample {(Xi,Yi)}, i =

1, . . . ,N , Xi = [xi1, xi2, . . . , xin]T, Y = [yi1, yi2, . . . , yim]
T. For a

single hidden layer neural network with L hidden nodes can be
expressed as Eq. (11):

fL(Xj) =

L∑
i=1

βigi(Xj) =

L∑
i=1

βig(ωi · Xj + bi) = oj (11)

In Eq. (11), β = [βi1, βi2, . . . , βim]
T is the output weight, g(x)

is the activation function, ωi = [ωi1, ωi2, . . . , ωim]
T bi is the input

weight, bi is expressed as the offset of the ith hidden neuron. For
classification problems, you can use the sigmoid function to limit
the range of output values to achieve classification.

The above is the first stage of the ELM, namely random feature
mapping. For the linear parameter solution of the second stage,
the weights β of the hidden layer and the output layer are
solved by minimizing the approximation error of the square error.
Hence, it can be expressed as follows:

min
β

∥Hβ−Y∥
2 (12)

where H =

⎡⎢⎣h(x1)
...

h(xN )

⎤⎥⎦ =

⎡⎢⎣h1(x1) · · · hL(x1)
...

. . .
...

h1(xN ) · · · hL(xN )

⎤⎥⎦ and Y =

⎡⎢⎣yT1
...

yTN

⎤⎥⎦ =

⎡⎢⎣y11 · · · y1m
...

. . .
...

yN1 · · · yNm

⎤⎥⎦
The above N equations can be written compactly as Eq. (13):

Hβ = Y
β = H†Y

s.t.H†
=

{
(HTH)−1HT

HT(HHT)−1

(13)

where HHT and HTH are a nonsingular matrix and H† is a Moore–
Penrose generalized inverse matrix of H. According to the ridge
regression theory, in order to improve the stability and general-
ization ability of the algorithm, adding the regular term C , the
minimum target of the Eq. (11) can be expressed as:

min Lf = ∥β∥
2
+ C

N∑
i=1

∥ξi∥
2

s.t.ξi = Yi − fl(xi), i = 1, 2 · · · ,N

(14)

According to Karush–Kuhn–Tucker (KKT) optimal conditions,
the hidden output weight β can be obtained by Eq. (15):

β = HT(
I
C

+ HHT)−1Y (15)

Then the multi-labels output function can be expressed as

fl(x) = Hβ = HHT
(

I
C

+ HHT
)−1

Y (16)

In the traditional ELM algorithm, the calculation results are
easily affected by random set values. This paper introduces a
kernel matrix to solve this problem.

ΩELM = HHT
: ΩELM(i,j) = K(xi, xj)

K(xi, xj) = exp(−γ
xi − xj

) (17)

Fig. 1. KELM AutoEncoding algorithm network structure diagram.

According to Eq. (16), HHT can be rewritten as:

HHT
=

⎡⎢⎢⎣
K(x, x1)
K(x, x2)

...

K(x, xN )

⎤⎥⎥⎦
T

(18)

The output of KELM network fl(x) can be presented by Eq. (18):

f (x) = h(x)HT( I
C + HHT)−1Y

=

⎡⎢⎣K(x,x1)
...

K(x,xN )

⎤⎥⎦ ( I
C + ΩELM)−1Y (19)

4.2. Kernel extreme learning machine autoencoder for multi-label

AutoEncoder is an important class of models for representa-
tion learning, and is one of the key ingredients of deep learning.
An autoencoder has two basic functions: encoding and decoding.
AutoEncoder can effectively extract the intrinsic link of features
in the data. Learning strategy can be expressed as a minimum
reconstruction error function [22]:
d∑

i=1

xi−∧

xi
2

ELM is a simple three-layer network structure, namely input
layer, hidden layer and output layer. Given a multi label train-
ing set D = {(x1,Y1), . . . (xN ,YN )}, where xi ∈ X is a single
instance, Yi ∈ y is a set xi of associated labels. When feature
xi is used as the input layer and the output layer of the ELM
is equal to the input layer, the ELM at this time becomes the
Autoencoder. The Autoencoder kernel extreme learning machine
algorithm proposed in this paper is to connect two KELMs. The
network structure of the algorithm is shown in Fig. 1.

The first KELM is AutoEncoder KELM, adding targets informa-
tion Y∗ to the input layer feature set. Y∗

∈ RN×1 is the summation
result of each labeled sample set value for the Non-equilibrium

Labels Completion
∧

Y. This reduces the impact of excessive data
size and reduced classification efficiency. The input feature X this
time is represent as Xi = {x1T, . . . , xiT, y∗

}, Xi ∈ R(d+1)×N . Taking
Xi as an input feature into Eqs. (12), (13) can be represent as:

xi = H1β1 (20)
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The first KELM model can be represented as:

min Lf = ∥β1∥
2
+ C

N∑
i=1

∥ξi∥
2

s.t.ξi = xi − fl(x), i = 1, 2, . . . ,N

(21)

The output of the first KELM contains information about the

feature and labels information
∧

Xi = {
∧

x1, . . . ,
∧

xN} and the trans-
forming features as input to the second classification KELM neural
network. The function h(

∧

xi) is used to map
∧

xi from the input space
to the L-dimensional feature space, and the Non-equilibrium La-
bels Completion matrix is obtained by the algorithm 1 as a
corresponding set of output labels. For a new object x to be
classified, the Non-equilibrium Labels Completion matrix is added
to the second KELM model to predict the labels set.
∧

Y = Conf × Y = H2β2

β2 = H2
†
∧

Y
(22)

Then the output function fl(x) of the multi-label ELM is repre-
sented as Eq. (23):

fl(x) = H2β2 =

⎡⎢⎢⎣
h(

∧

x1)
...

h(
∧

xN )

⎤⎥⎥⎦
N×L

⎡⎢⎣βT
1
...

βT
L

⎤⎥⎦
L×d

(23)

Eq. (24) can be obtained from Eq. (22):

β2 = H2
†
∧

Y
s.t.H2

†
= H2

T(H2H2
T)−1

(24)

The mathematical model of the second KELM network for
multi-label classification learning can be expressed by Eq. (25):

min Lf = ∥β2∥
2
+ C

N∑
i=1

∥ξi∥
2
;

s.t.ξi = Y − fl(x), i = 1, 2, . . . ,N

(25)

where, β2 is output weight of hidden layer, and C is cost pa-
rameter (also called ridge regression parameter). ξi is the error
between theoretical output Yi and the actual output fl(xi). Then
the Eq. (15) can be written compactly as Eq. (26):

β2 = HT(
I
C

+ H2H2
T)−1

∧

Y (26)

The multi-label input function added to the kernel matrix
according to Eq. (19) is represented as Eq. (27):

fl(x) = h(x)H2
T( I

C + H2H2
T)−1

∧

Y

=

⎡⎢⎢⎢⎣
K (x,x1)

...

K (x,xN )

⎤⎥⎥⎥⎦ ( I
C + ΩELM)−1

∧

Y
(27)

Minimize the objective function is represented as Eq. (28):

fSSE =

N∑
i

fl(xi) −

∧

Yi

2

(28)

Therefore, the Multi-label learning with Kernel Extreme Learn-
ing Machine AutoEncoder algorithm is as follows:

Algorithm 2 Kernel Extreme Learning Machine
AutoEncoder(KELM-AE)
Input: training set data D, testing set D∗

= {xi,Yi |1 ≤ i ≤ M } ⊂

Rd
× {+1, −1}k.

Output: Y∗, the prediction label.
1: for training data set D do
2: Compute Non-equilibrium Labels Completion matrix

NeLCM;
3: Compute the first KELM kernel matrix ΩELM ;
4: Compute the first KELM network structure

( I
C + ΩELM)−1X;

5: Compute the output
∧

Xi of the first KELM by Eqs. (19)–(21);
6: Compute the second KELM kernel matrix ΩELM;
7: Compute the second KELM network structure

( I
C + ΩELM)−1

∧

Y;
8: Compute the output weight β2 of the second KELM by Eqs.

(24)–(26);
9: end for

10: for testing set D∗ do
11: Compute the outputs by Eq. (23);
12: Predict labels Outputs(k, i)

=

{
1 fl(

∧

xi) ≥ 0

−1 fl(
∧

xi) < 0
; i = 1, · · · ,M; k = 1, · · · , l;

13: end for
14: return Y∗

5. The KELM-AE experiment and results

5.1. The description of the experimental data sets

In order to illustrate the effectiveness of the algorithm KELM-
AE, we choose 14 sets of data sets such as Emotions, Natural
scene and Yeast 3 Mulan datasets and 11 sets of Yahoo Web Pages.
TheMulan datasets is from http://mulan.sourceforge.net/datasets-
mlc.html. The Yahoo Web Pages datasets is from http://www.kecl.
ntt.co.jp/as/members/ueda/yahoo.tar. The specific description is
shown in Table 1.

5.2. The experimental environment and evaluation indicators

The experiment is conducted on a computer equipped with
Windows 7 Operation System, Intel Core(TM) i5-2380p, and 3.10
GHz CPU, and in Matlab 2016a for the operation of experimen-
tal codes. We choose 5 commonly-applied evaluation criteri-
ons, namely, Average Precision, Coverage, Hamming Loss, One-
Error, and Ranking Loss [23] to evaluate the MLLA performance.
The criterions are abbreviated as AP↑, CV↓, HL↓, OE↓, and RL↓
for convenience, where ↑ indicates the higher value, the better,
and ↓ the lower, the better. Suppose h(·), the multi-label classi-
fier; f (·, ·), the prediction function; rankf , the ranking function;
D = {(xi, Yi |1 ≤ i ≤ n )}, the MLD. The formal methods of these
criterions are defined as follows:

(1) Average Precision (AP): Evaluating the average score of
correct labels ranked in the specific label y ∈ Yi:

APD(f ) =
1
n

n∑
i=1

1
|Yi|

∑
y∈Yi

⏐⏐{rankf (xi, y′) ≤ rankf (xi, y), y′
∈ Yi}

⏐⏐
rankf (xi, y)

(2) Coverage (CV): An indicator to measure the average step
number for traversing all related labels of the given sample:

CVD(f ) =
1
n

n∑
i=1

maxy∈Yi rankf (xi, y) − 1

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar
http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar
http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar
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Table 1
Detailed descriptions of multi-label data sets.
Data sets Training sets Test sets No. of labels No. of features Average no. of labels Label density Fields

Arts 2000 3000 26 462 1.636 0.063 Text
Business 2000 3000 30 438 1.588 0.053 Text
Computers 2000 3000 33 681 1.508 0.046 Text
Education 2000 3000 33 550 1.461 0.044 Text
Entertainment 2000 3000 21 640 1.42 0.068 Text
Health 2000 3000 32 612 1.663 0.052 Text
Recreation 2000 3000 22 606 1.423 0.065 Text
Reference 2000 3000 33 793 1.169 0.035 Text
Science 2000 3000 40 743 1.451 0.036 Text
Social 2000 3000 39 1047 1.283 0.033 Text
Society 2000 3000 26 462 1.692 0.063 Text
Emotions 391 202 6 72 1.868 0.311 Music
Natural scene 1000 1000 5 294 1.236 0.247 Images
Yeast 1500 917 14 103 4.237 0.303 Biology

Fig. 2. The stability index values obtained on 14 benchmark multi-label data sets with different evaluation metrics.

(3) Hamming Loss (HL): An indicator to measure real labels in
a single label and wrong matches of prediction labels of the given
sample:

HLD(h) =
1
n

n∑
i=1

1
|Y |

|h(xi) ̸= Yi|

(4) One-Error (OE): Evaluating the occurrence number of labels

when top-ranking labels are not correct:

OED(f )
1
n

n∑
i=1

[[argmaxy∈Y f (xi, y)] /∈ Yi]
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(5) Ranking Loss (RL): An indicator to evaluate the circum-
stances where the ranking of uncorrelated labels of a given sam-
ple is lower than that of correlated labels:

RLD(f ) =
1
n

n∑
i=1

1
|Yi|

⏐⏐Y i
⏐⏐

×
⏐⏐{(y1, y2) ⏐⏐f (xi, y1) ≤ f (xi, y2), (y1, y2) ∈ Yi × Yi }

⏐⏐

5.3. The choice of algorithms and the configuration of related pa-
rameters

In order to verify the performance of the proposed algorithm,
the KELM-AE algorithm is compared with 5 multi-label main-
stream classification algorithms, which are RELM [24], MLKNN,
LIFT, GLOCAL [25] and MLFE, respectively. In the KELM-AE al-
gorithm, the Non-equilibrium parameter is set to [0,0.5]. In the
RELM algorithm, the regularization coefficient is set between
[1,100], and the number of hidden layer neurons is set to 100. In
the ML-KNN algorithm, the nearest neighbor K and the smooth-
ing parameter s are set to 15 and 1 respectively. In the LIFT
algorithm, the parameter r = 0.1 and the kernel function select
Linear. In GLOCAL, the parameter λ is set to 1, and the other
parameters, as well as those of the baseline methods, are selected
via 5-fold cross-validation on the training set. In the MLFE algo-
rithm, the kernel function selects RBF, and the kernel parameter
β1, β2 and β3 are selected from {1, 2, 10}, {1, 10, 15} and {1, 10},
which are cross validated on the training set respectively. Because
the result of LIFT algorithm is unstable, in order to improve the
accuracy, run LIFT 10 times, and the average (mean) and standard
deviation (STD) are given in our experiments.

5.4. The experimental results

The experimental results of the KELM-AE and other 5 algo-
rithms on 14 data sets are shown in Tables 2 to 6, where the
ranking of the experimental results corresponding to each data
set is shown in Tables 2 to 6 in the form of subscripts. The average
ranking of each algorithm in all data sets is given in the last row,
where the lower the average ranking, the better the algorithm.
(Notes: No value indicates that the algorithm is stable with no
change in the total 10 operations).

According to all the experimental results which are listed in
Tables 2–6, we can draw conclusions as follows: (a)Comparing
KELM-AE with MLkNN and RELM, the major deficiency of MLkNN
and RELM is that it fails to consider the labels correlation. KELM-
AE performs better than MLkNN and RELM at most cases since it
considers the labels correlation. (b) Compared with MLFE, KELM-
AE performs better on all data sets because MLFE only considers
the relationship between features and tags and does not take
advantage of the correlation among labels. (c) From the experi-
mental results of LIFT, which train the multi-label classifier based
on label-specific features, we can observe that KELM-AE achieves
significantly better performance than LIFT at most cases. The
reason is that the feature extraction in LIFT help it avoid di-
mensional disaster and feature redundancy. LIFT prompts us to
consider feature dimension reduction to improve the accuracy
of classification. (d) Compared with GLOCAL, which considers
both global and local label correlations while the training of
multi-label classifier, KELM-AE basically performs better overall
on various evaluation criteria. It is worth mentioning that this
also inspired us to consider local labels correlation information.

6. The stability analysis and statistical hypothesis test

In order to further illustrate the effectiveness of the pro-
posed method, the stability analysis and hypothesis testing of the
algorithm are carried out based on the experimental results.

6.1. The stability analysis

In order to verify the stability of different multi label learn-
ing algorithms, the spider net diagram is used to represent the
stability analysis of algorithm [26]. Because the results of the
prediction classification are very different in different data sets
for different evaluation indicators, we standardize the results be-
tween [0.1,0.5] as a general standard. Finally, the stability index is
represented through normalized values. Fig. 2 shows the stability
of the algorithm under different data sets for each evaluation
index.

As shown in Fig. 2, we can observe: (1) For AP, KELM-AE
obtains a fairly stable effect between the stable finger values of
the 12 data sets in the [0.4,0.5]. (2) For CV, the stable value of
KELM-AE on 12 data sets is between [0.4,0.5], and the solution is
quite stable compared to the GLOCAL and LIFT algorithm. (3) For
the HL, KELM-AE can get more stable results on 11 data sets, and
are more stable than other algorithms. (4) For the OE, KELM-AE
can provide a more stable solution on 12 data sets in the [0.4,0.5],
and KELM-AE is also more stable than LIFT, GLOCAL and MLFE. (5)
For RL, KELM-AE can achieve more stable solution on all data sets.
Therefore, the results in Fig. 2 show that KELM-AE is more stable
and has better prediction performance.

6.2. The statistical hypothesis test

We statistically employ the Nemenyi Test [11,27] with signifi-
cance of 5% to compare the experimental results of the KELM-AE
and other algorithms in all 14 data sets. We also believe there is
no significant difference between any two algorithms when their
difference of the average ranking in all data sets are smaller or
equal to the critical difference (CD), or there is significant differ-
ence. Every two algorithms are compared in terms of different
evaluation indicators, as shown in Fig. 3, where the CD on the
top line equals 2.0913, and the algorithms with no significant
difference are connected by colorful lines. The algorithms are
ranked in a decreasing order from left to right in each figure.

For each algorithm, there are 25 comparative results (5 com-
parative algorithms and 5 evaluation criterions). It is found in
Fig. 3 that:

• For the KELM-AE algorithm, there is no statistically signif-
icant difference from the other algorithms about 52%. In
terms of the AP, as shown in Fig. 3(a), there is no significant
difference among KELM-AE, LIFT and GLOCAL algorithms. In
terms of the CV, as shown in Fig. 3(b), there is no significant
difference among KELM-AE. LIFT, GLOCAL and MLKNN algo-
rithms. In terms of the HL, as shown in Fig. 3(c), KELM-AE,
LIFT, MLFE and RELM algorithms do not have a significant
difference. In terms of OE, as shown in Fig. 3(d), there is no
significant difference among KELM-AE, RELM and GLOCAL
algorithms. In terms of the RL, as shown in Fig. 3(e), there is
no significant difference among KELM-AE, LIFT and GLOCAL
algorithms. Therefore, the KELM-AE is superior to other
algorithms in 48% cases.

• For the LIFT algorithm, there is no statistical difference be-
tween it and other algorithms in 80% of conditions, but in
24% cases, it is superior to other algorithms.

• For the GLOCAL algorithm, there is no statistical difference
between it and other algorithms in 56% of conditions, but in
32% cases, it is superior to other algorithms.
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Fig. 3. The performance comparison of algorithms.

Table 2
The AP (↑) results of all 14 data sets.
Data KELM-AE RELM MLKNN LIFT GLOCAL MLFE

Arts 0.6257(1) 0.6071 ± 0.0011(4) 0.5093(6) 0.6072 ± 0.0039(3) 0.6234(2) 0.5912(5)
Business 0.8811(4) 0.8823 ± 0.0004(3) 0.8798(5) 0.8827 ± 0.0013(2) 0.8870(1) 0.8775(6)
Computer 0.7069(1) 0.6995 ± 0.0013(3) 0.6334(6) 0.6980 ± 0.0048(4) 0.7064(2) 0.6848(5)
Education 0.6459(2) 0.6331 ± 0.0014(3) 0.5995(6) 0.6328 ± 0.0024(4) 0.6467(1) 0.6190(5)
Entertainment 0.6791(3) 0.6778 ± 0.0015(4) 0.6012(6) 0.6852 ± 0.0032(2) 0.6913(1) 0.6745(5)
Health 0.7947(1) 0.7775 ± 0.0017(3) 0.6812(6) 0.7934 ± 0.0010(4) 0.7906(2) 0.7680(5)
Recreation 0.6311(2) 0.6269 ± 0.0015(3) 0.4544(6) 0.6213 ± 0.0032(4) 0.6321(1) 0.6104(5)
Reference 0.7215(1) 0.7050 ± 0.0015(3) 0.6193(6) 0.6991 ± 0.0021(4) 0.7173(2) 0.6977(5)
Science 0.6033(1) 0.5880 ± 0.0021(4) 0.5327(6) 0.5882 ± 0.0024(3) 0.6017(2) 0.5689(5)
Social 0.7719(1) 0.7664 ± 0.0012(5) 0.7490(6) 0.7686 ± 0.0028(3) 0.7715(2) 0.7565(4)
Society 0.6361(2) 0.6304 ± 0.0012(4) 0.6125(5) 0.6317 ± 0.0019(3) 0.6431(1) 0.6095(6)
Emotions 0.8015(2) 0.7640 ± 0.0162(5) 0.7808(4) 0.7485 ± 0.0106(6) 0.8031(1) 0.7822(3)
Natural scene 0.8196(1) 0.7531 ± 0.0065(6) 0.7615(4) 0.8059 ± 0.0023(3) 0.8112(5) 0.8166(2)
Yeast 0.7649(1) 0.7533 ± 0.0025(6) 0.7585(4) 0.7591 ± 0.0015(3) 0.7598(2) 0.7545(5)
Average ranking 1.6429 4 5.4286 3.4286 1.7857 4.7143

Table 3
The CV (↓) results of all 14 data sets.
Data KELM-AE RELM MLKNN LIFT GLOCAL MLFE

Arts 4.4583(1) 5.5812 ± 0.0369(5) 5.4453(4) 4.6974 ± 0.0733(2) 5.0237(3) 5.6857(6)
Business 2.2670(3) 2.5430 ± 0.0294(5) 2.1847(2) 2.1121 ± 0.0283(1) 2.3987(4) 2.7190(6)
Computer 3.6353(1) 4.6083 ± 0.0339(5) 4.4160(4) 3.8325 ± 0.0783(2) 4.0540(3) 4.7850(6)
Education 3.4767(1) 4.4921 ± 0.0332(5) 3.4953(2) 3.5057 ± 0.0244(3) 4.1257(4) 5.0973(6)
Entertainment 2.6650(2) 3.3208 ± 0.0233(5) 3.1477(4) 2.6568 ± 0.0289(1) 2.8983(3) 3.4060(6)
Health 2.6683(2) 3.5983 ± 0.0457(5) 3.3047(4) 2.6325 ± 0.0010(1) 3.2303(3) 3.9427(6)
Recreation 3.8303(2) 4.2339 ± 0.0246(4) 5.0973(6) 3.8044 ± 0.0348(1) 4.1420(3) 4.5443(5)
Reference 2.5733(1) 3.7601 ± 0.0472(5) 3.5420(4) 2.7317 ± 0.0353(2) 3.1087(3) 4.0130(6)
Science 5.5140(1) 6.9849 ± 0.0707(5) 6.0430(3) 5.5897 ± 0.0700(2) 6.0583(4) 7.3880(6)
Social 3.1713(3) 4.0361 ± 0.0422(5) 3.0313(2) 2.9629 ± 0.0908(1) 3.4410(4) 4.3287(6)
Society 5.3023(1) 6.2731 ± 0.0289(5) 5.3653(3) 5.3604 ± 0.0541(2) 5.6253(4) 6.3313(6)
Emotions 1.7871(1) 2.0965 ± 0.0733(4) 1.9158(2) 2.1574 ± 0.0604(5) 1.8614(6) 1.9703(3)
Natural_scene 0.8700(2) 1.0892 ± 0.0271(6) 1.0680(5) 0.8957 ± 0.0044(4) 0.8860(1) 0.8440(3)
Yeast 6.2999(2) 6.5706 ± 0.0277(6) 6.4144(3) 6.4689 ± 0.0254(4) 6.2756(1) 6.5027(5)
Average ranking 1.6429 5 3.4286 2.2143 3.4286 5.2857

• For the MLFE algorithm, there is no statistical difference
between it and other algorithms in 60%, but in 4% cases, it
is superior to other algorithms.

From the above analysis, the KELM-AE algorithm has the best
performance. In 48% of cases, it is statistically superior to other
algorithms, followed by the GLOCAL algorithm. In 32% of cases,
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Table 4
The HL (↓) results of all 14 data sets.
Data KELM-AE RELM MLKNN LIFT GLOCAL MLFE

Arts 0.0539(1) 0.0545 ± 0.0001(2) 0.0612(5) 0.0546 ± 0.0002(3) 0.0632(6) 0.0576(4)
Business 0.0260(3) 0.0254 ± 0.0001(2) 0.0269(5) 0.0262 ± 0.0001(4) 0.0529(6) 0.0254(1)
Computer 0.0342(1) 0.0351 ± 0.0001(3) 0.0412(5) 0.0343 ± 0.0001(2) 0.0461(6) 0.0358(4)
Education 0.0371(1) 0.0377 ± 0.0001(2) 0.0387(4) 0.0381 ± 0.0002(3) 0.0442(6) 0.0389(5)
Entertainment 0.0524(2) 0.0525 ± 0.0001(3) 0.0603(5) 0.0521 ± 0.0002(1) 0.0675(6) 0.0540(4)
Health 0.0324(1) 0.0347 ± 0.0001(3) 0.0458(5) 0.0326 ± 0.0022(2) 0.0518(6) 0.0384(4)
Recreation 0.0547(1) 0.0565 ± 0.0001(3) 0.0618(5) 0.0548 ± 0.0002(2) 0.0650(6) 0.0571(4)
Reference 0.0253(1) 0.0257 ± 0.0001(4) 0.0314(5) 0.0256 ± 0.0002(3) 0.0357(6) 0.0256(2)
Science 0.0307(1) 0.0312 ± 0.0001(2) 0.0325(5) 0.0316 ± 0.0001(4) 0.0356(6) 0.0313(3)
Social 0.0201(1) 0.0206 ± 0.0001(3) 0.0218(5) 0.0207 ± 0.0001(4) 0.0331(6) 0.0202(2)
Society 0.0509(1) 0.0519 ± 0.0002(2) 0.0536(5) 0.0525 ± 0.0002(3) 0.0624(6) 0.0531(4)
Emotions 0.2104(1) 0.2381 ± 0.0069(4) 0.2137(2) 0.2368 ± 0.0034(5) 0.3292(6) 0.2459(3)
Natural scene 0.1736(3) 0.1991 ± 0.0046(5) 0.1836(4) 0.1654 ± 0.0017(2) 0.2470(6) 0.1624(1)
Yeast 0.2038(4.5) 0.2016 ± 0.0015(3) 0.1980(2) 0.1974 ± 0.0010(1) 0.3038(6) 0.2038(4.5)
Average ranking 1.6071 2.9286 4.4286 2.7857 6 3.25

Table 5
The OE (↓) results of all 14 data sets.
Data KELM-AE RELM MLKNN LIFT GLOCAL MLFE

Arts 0.4670(1.5) 0.4803 ± 0.0024(3) 0.6327(6) 0.4920 ± 0.0063(4) 0.4670(1.5) 0.4953(5)
Business 0.1137(2) 0.1168 ± 0.0009(4) 0.1213(5) 0.1222 ± 0.0023(6) 0.1130(1) 0.1147(3)
Computer 0.3497(1) 0.3610 ± 0.0032(3) 0.4367(6) 0.3614 ± 0.0069(4) 0.3520(2) 0.3770(5)
Education 0.4550(2) 0.4718 ± 0.0024(3) 0.5207(6) 0.4781 ± 0.0030(5) 0.4537(1) 0.4780(4)
Entertainment 0.4253(5) 0.4130 ± 0.0028(4) 0.5303(6) 0.4084 ± 0.0057(2) 0.3977(1) 0.4123(3)
Health 0.2497(2) 0.2716 ± 0.0034(4) 0.4207(6) 0.2494 ± 0.0019(1) 0.2543(3) 0.2743(5)
Recreation 0.4693(3) 0.4684 ± 0.0024(2) 0.7067(6) 0.4815 ± 0.0052(4) 0.4610(1) 0.4860(5)
Reference 0.3567(1) 0.3762 ± 0.0015(3) 0.4730(6) 0.3865 ± 0.0020(5) 0.3677(2) 0.3820(4)
Science 0.4920(1) 0.4992 ± 0.0033(3) 0.5803(6) 0.5103 ± 0.0040(4) 0.4930(2) 0.5187(5)
Social 0.2793(1) 0.2853 ± 0.0020(2) 0.3257(6) 0.2941 ± 0.0033(5) 0.2890(3) 0.2923(4)
Society 0.3987(2) 0.4007 ± 0.0017(3) 0.4370(6) 0.4059 ± 0.0019(4) 0.3933(1) 0.4273(45
Emotions 0.2921(2) 0.3287 ± 0.0308(4) 0.3317(5) 0.3569 ± 0.0145(6) 0.2822(1) 0.3069(3)
Natural scene 0.2770(1) 0.3852 ± 0.0107(6) 0.3670(5) 0.3002 ± 0.0059(4) 0.2950(3) 0.2910(2)
Yeast 0.2312(1) 0.2388 ± 0.0053(5) 0.2345(2) 0.2412 ± 0.0034(6) 0.2386(4) 0.2356(3)
Average ranking 1.8214 3.5 5.5 4.2857 1.8929 4

Table 6
The RL (↓) results of all 14 data sets.
Data KELM-AE RELM MLKNN LIFT GLOCAL MLFE

Arts 0.1135(1) 0.1434 ± 0.0011(4) 0.1520(6) 0.1208 ± 0.0018(2) 0.1259(3) 0.1489(5)
Business 0.0365(2) 0.0422 ± 0.0006(5) 0.0374(3) 0.0346 ± 0.0001(1) 0.0396(4) 0.0464(6)
Computer 0.0709(1) 0.0949 ± 0.0008(5) 0.0922(4) 0.0758 ± 0.0002(2) 0.0818(3) 0.1007(6)
Education 0.0744(1) 0.0936 ± 0.0006(5) 0.0800(3) 0.0773 ± 0.0018(2) 0.0858(4) 0.1097(6)
Entertainment 0.0927(2) 0.1139 ± 0.0008(4) 0.1151(5) 0.0916 ± 0.0012(1) 0.0976(3) 0.1184(6)
Health 0.0412(1) 0.0563 ± 0.0008(4) 0.0605(5) 0.0416 ± 0.0004(2) 0.0486(3) 0.0646(6)
Recreation 0.1296(1) 0.1436 ± 0.0007(4) 0.1912(6) 0.1310 ± 0.0015(2) 0.1398(3) 0.1568(5)
Reference 0.0609(1) 0.0889 ± 0.0011(4) 0.0919(5) 0.0661 ± 0.0010(2) 0.0729(3) 0.0970(6)
Science 0.1009(1) 0.1300 ± 0.0007(5) 0.1166(4) 0.1036 ± 0.1008(2) 0.1107(3) 0.1399(6)
Social 0.0554(2) 0.0709 ± 0.0007(5) 0.0561(3) 0.0539 ± 0.0013(1) 0.0601(4) 0.0779(6)
Society 0.1268(1) 0.1481 ± 0.0006(5) 0.1339(4) 0.1286 ± 0.0012(2) 0.1305(3) 0.1547(6)
Emotions 0.1529(1) 0.2020 ± 0.0143(5) 0.1729(3) 0.2226 ± 0.0125(6) 0.1608(2) 0.1803(4)
Natural scene 0.1490(2) 0.2057 ± 0.0062(6) 0.1982(5) 0.1551 ± 0.0031(4) 0.1543(3) 0.1452(1)
Yeast 0.1682(2) 0.1789 ± 0.0017(6) 0.1715(4) 0.1697 ± 0.0011(3) 0.1636(1) 0.1777(5)
Average ranking 1.3571 4.7857 4.2867 2.2857 3 5.2857

it is statistically superior to other algorithms. The third is the
LIFT algorithm, which is superior to other algorithms in 24% of
cases. The KELM-AE algorithm has the best performance, and the
experiment further illustrates the effectiveness of the KELM-AE
algorithm.

7. Conclusion

In multi-label classification learning, it is very important to
study the correlation between feature information and labels
in multi label learning. In this paper we propose a Kernel Ex-
treme Learning Machine AutoEncoder algorithm, which use the
kernel extreme learning machine to autoencoder the fuzzy as-
sociations between the features in the input space, and use the
non-equilibrium labels completion algorithm to add the correla-
tion between the labels in the labels space. Therefore, the relevant

information contained in the feature space and the labels space
can be fully investigated. Experimental results show that KELM-
AE algorithm is better than some common multi-label learning
algorithms.

Because the new generated features cannot theoretically guar-
antee a strong correlation with the labels. In the future, we
will study the deep relationship between feature space and la-
bel space, as well as the method of feature selection and local
label correlation. We will fully exploit the effective information
contained in the output space, and combine these methods to
construct a unified multi-label learning framework.
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