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a b s t r a c t 

In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learn- 

ing performance. Most of the existing methods for studying labels correlation usually do not consider 

the study of feature-space information. Further study is deserved about how to synchronize rich in- 

formation contained in features-space and labels-space. In this paper, a multi-label learning algorithm 

of N on- E quilibrium L abels C ompletion with M ean S hift (i.e. NeLC-MS) was proposed. The aim of this 

research was to mine the feature hidden information by reconstructing the features space, and intro- 

duce non-equilibrium label correlation information so as to better improve the robustness of multi-label 

learning classification. First, the mean shift clustering method was used to reconstruct the information 

between features in the feature space to obtain the hidden information between features. Then, the new 

information entropy was used to measure the correlation between labels which gets the basic labels con- 

fidence matrix. Then the basic labels confidence matrix was improved to construct a Non-equilibrium la- 

bels completion matrix by the non-equilibrium parameters. Finally, the new training set was constructed 

by using the reconstructed features space and the Non-equilibrium Labels Completion matrix, and the 

existing linear classifier was used for predicting the new training set. The experimental results of the 

proposed algorithm in the opening benchmark multi-label datasets showed that the NeLC-MS algorithm 

would have some advantages over other comparative multi-label learning algorithms, and the effective- 

ness of the proposed method was further illustrated by the use of statistical hypothesis test and stability 

analysis. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The multi-label learning [1] is one of the important learning

frameworks for dealing with real-world objects with rich seman-

tics. At present, most of the multi-label learning methods, such as

binary relevance (BR), label power set (LP) [2] , back-propagation

for multi-label (BP-MLL) [3] and multi-label lazy learning meth-

ods(such as ML-KNN) [4] , are usually considered to be indepen-

dent individuals. In fact, in the real world, they’re not independent

from each other among the labels, and there is a certain correla-

tion between them. For example, if a document contains “Sports ”

and “physical education ”, the possibility of marking “Olympics ” will

be larger, and the possibility of marking “politics ” will be smaller.

In order to build strong generalization performance, it is an
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mportant issue in the research of multi-label classification learn-

ng algorithm about how to make full use of the correlation infor-

ation between labels. 

The relevant algorithms targeted to the correlation between la-

els have been proposed in great numbers and achieved good

esults. For example, by transforming the multi-label learning

roblems into BR-based classifier chains, the Classifier Chains (CC)

lgorithm [5] achieves accurate predictions, while it considers the

orrelation between labels. However, the chain is randomly ar-

anged and only considers the correlation between labels. For the

alibrated Label Ranking (CLR) [6] , it tells correlated labels from

hose uncorrelated ones based on artificially-calibrated labels, but

ields algorithmically-complicated, yet less accurate predictions at

he cost of the number of sub-classifiers, if encountered with huge

ata sets and large amounts of classified labels. The Random k -

abel sets (RAkEL) [7] , based on an integrated algorithm of LP clas-

ifiers and rated as an improved LP version, consider the corre-

ation between labels, but it leads to the complexity of the al-

orithm. By employing the maximum interval criterion strategy
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o adapt to the multi-label learning, the Support Vector Machine

anking (RankSVM) [8] constructs SVM classifiers in its model-

ng to the ranking loss of correlated and uncorrelated labels of

orresponding samples, and it is time-consuming with regard to

uge parameter calculation. On the basis of the ML-KNN algo-

ithm, Younes et al. [9] add the domain relation on the basis of

he maximum posterior probability (MAP), considering the label

orrelation; Gweon et al. [10] propose a novel multi-label learning

ethod, which uses a dual distance nearest neighbor marker set

NLDD), but NLDD only implicitly considers the correlation among

he labels. Zhang and Yeung [11] intend to describe the correla-

ion between paired labels (positively or negatively correlated, or

ncorrelated) based on covariance matrices between labels, but it

olves only the correlation between paired labels. 

At the same time, information entropy [12] as an effective mea-

ure of uncertainty has been widely applied to the study of labels

orrelation. Due to consideration to the importance of the correla-

ion between labels, Zhang et al. [13] propose a multi-label classi-

cation algorithm based on the correlation information entropy to

easure weak and strong correlations between labels on the ba-

is of the RAkEL algorithm. Lee et al. [14] propose a new multi-

abel learning method based on CC algorithm. The correlation of

abels is modeled by a directed acyclic graph, which maximizes the

orrelation between labels by using conditional entropy, and good

esults have been achieved. Park et al. [15] propose a multi-label

earning system with probability distribution, which uses normal-

zed entropy as a standard for the system to measure the accuracy

f the whole classification. 

It is not difficult to find that it is feasible to use the infor-

ation entropy to represent the correlation among labels. How-

ver, these methods often measure the mutual influence between

he marked labels, which neglects the influence of annotation of

nknown labels to the quality of label sets and the influence of

nown annotations to unknown ones. In literature [16] , it is found

hat there is an asymmetric relationship between labels through

eusable weight calculation, which indicates that there are some

roblems using the traditional mutual information or cosine sim-

larity method. Moreover, these methods often measure the infor-

ation entropy or mutual information between the marked labels.

t can be seen that using this relationship to measure the related

nformation between labels only takes into account the interaction

etween the marked labels, but neglects the influence of the un-

arked labels. It is undeniable that a lot of valuable information

ay be included in unmarked labels, such as an “apple ” and no

mobile ” in a document, but a “cell phone ” often determines the

endencies of the labels set as a whole. Moreover, the unmarked

abels in the labels space may contain a lot of effective informa-

ion. 

In fact, in the multi-label learning data set, the number of la-

els is generally more, but the average number and the density

f labels for each object are not high. This phenomenon is also

onsistent with the common sense that the known labels of an

bject should not be greater than the unknown labels, otherwise

he multi-labels of the object will lose its meaning. At the same

ime, it is undeniable that a lot of valuable information may be

ontained in unknown labels, which is common in the real world. 

Based on this consideration, we introduce the non-equilibrium

arameter and propose a non-equilibrium labeling completion al-

orithm. First, the strength of the relationship between labels is

easured by the amount of conditional information between la-

els, and the basic confidence matrix of labels is obtained. Then a

ore accurate mark confidence matrix of the data set is obtained

y using the proposed non-equilibrium labeling confidence matrix

alculation method. Finally, the initial incomplete standard is used

o reinforce by the label confidence matrix. It can be seen that it
ill undoubtedly lead to a more accurate classification model by

odeling with non-equilibrium confidence matrix. 

Traditional information entropy theory has been applied to

easure the correlation between labels and achieved good re-

ults. But the traditional entropy has a high complexity of com-

utation because it has no nature of complement. Therefore, a

ew definition about the rough entropy will be introduced in this

aper. 

Besides, the use of labels correlation to reconstruct informa-

ion in feature space has also been widely applied. For example,

hang [17] proposes an improved algorithm IMMLA on the basis

f ML-KNN algorithm. The algorithm takes the labels correlation

o improve the performance of the classifier, but it does not accu-

ately reflect the complex relationship between the labels. The LIFT

18] method first uses the K -means clustering algorithm to cluster

he positive and negative examples of each label, and calculates

he distance between the sample and the cluster center to gener-

te each labels. Zhang et al. [19] propose a multi-label information

ncrease algorithm (Multi-label Learning with Feature-induced La-

eling Information Enrichment, MLFE), which helps to change the

tructure information in the feature space by enriching the labels

nformation, and the classification effect of the algorithm has some

dvantages. A new semi-supervised and multi-label active learning

ethod is proposed by Wu [20] , which combines automatic anno-

ation and manual annotation to reduce the amount of annotation

elated to the active learning process. 

In addition, the mean shift clustering [21] algorithm does not

eed the prior knowledge of cluster number and the shape of the

luster. At the same time, the Gauss kernel function and weight

alue are added to the mean shift algorithm, which makes the in-

ormation effectively preserved in the process of the feature space

econstruction and can effectively extract the fuzzy information

etween the feature space features. After adding the Gauss kernel

unction, the reconstructed feature space is stable. Besides, non-

quilibrium labels completion is introduced to add labels corre-

ation information. It can make the training centralization feature

nd label space rich in information to improve the generalization

erformance of the classifier, which makes NeLC-MS more stable

erformance with the combination of mean shift clustering and

on-equilibrium labeling complement. 

Based on the idea of the above reconstruction feature space in-

ormation, this paper proposes an unbalanced parameter algorithm

Multi-label learning algorithm of Non-equilibrium Labels Comple-

ion with Mean Shift, NeLC-MS). Firstly, it uses mean shift clus-

ering [20] algorithm to extract the ambiguity between features in

he feature space. In this way, the feature space is reconstructed,

nd a new training set is obtained by introducing the labels cor-

elation information into the Non-equilibrium labels completion

ethod, which enhances the training set information and improves

he generalization performance of the classifier. Both experimental

esults and statistical hypothesis tests of the NeLC-MS shows that

he algorithm has a certain validity and stability. At the same time,

t also confirms the rationality of the combination of feature space

econfiguration and the correlation between labels to improve the

erformance of the algorithm. 

The rest of the paper is organized as follows. Section 2 gives

ome basic notions related to Multi-label learning and the rough

ntropy. Section 3 introduces the modeling of the non-equilibrium

atrix and neighboring labels space for the labels matrix com-

letion. Our proposed method for the multi-label classification of

eLC-MS is proposed in Section 4 . In Section 5 , experimental re-

ults of the NeLC-MS in opening multi-label data sets shows that

ur algorithm is effective. Statistical hypothesis tests further prove

ur method in Section 6 . In the last section, we sum up what has

een discussed and put forward further research. 
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2. The multi-label learning and rough entropy 

2.1. The multi-label learning and traditional entropy 

Definition 1 [1] . Suppose the matrix of sample feature X =
[ x 1 , . . . , x N ] 

T ∈ R N ×d , where N and d denote the number of samples

and the dimension of features of the training data, respectively;

x i ∈ R 

d , the feature vector corresponding to the i th sample; Y =
[ y 1 , . . . , y N ] 

T ∈ R 

N ×k , the label matrix corresponding to the sample,

where k the number of labels in the data; y i = { 1 , −1 } k , the binary

label indicator vector corresponding to the i th sample. Therefore,

the multi-label training data set containing N samples is: 

S = { ( x i , Y i ) | 1 ≤ i ≤ N } ⊂ R 

d × { +1 , −1 } k (1)

Definition 2 [12,22] . Suppose the set A = { a 1 , . . . , a m 

} , and

p ( a i )denotes the prior probability of the element a i , 

H ( A ) = −
n ∑ 

i =1 

p ( a i ) log 2 p ( a i ) (2)

then H ( A ) is the information entropy of the set A , and the larger

value of it, the more uncertainty of the set. 

Definition 3 [12,22] . Suppose the set A = { a 1 , . . . , a m 

} and the set

B = { b 1 , . . . , b n } , then the conditional entropy of the set B under

the given constraints of the set A is: 

H ( B | A ) = −
m ∑ 

i =1 

n ∑ 

j=1 

H 

(
b j | a i 

)
(3)

where H( b j | a i ), the conditional information, is employed to de-

scribe the uncertainty of the element b j with the appearing ele-

ment a i . The larger the value, the more uncertainty between a i and

b j , and vice versa: 

H( b j | a i ) = −p( a i b j ) log 2 p( b j | a i ) (4)

The conditional entropy is thus employed to describe the un-

certainty of the set B with the appearing set A . 

Meanwhile, the traditional entropy is often used in the multi-

label learning algorithms and it has a high complexity of compu-

tation because it has no nature of complement. Therefore, a new

definition about the rough entropy will be introduced in this paper.

2.2. New definition about the rough entropy 

An information system is usually denoted as triplet S = ( U , A , f ) ,

which is called a decision table, where U is the universe which con-

sists of a finite set of objects, A is the set of attributes. With ev-

ery attribute a ∈ A, set of its values V a is associated. Each attribute

a determines an information function f : U → V a such that for any

a ∈ A and x ∈ U, f(x) ∈ V a . Each non-empty subset P ⊆A determines an

indiscernible relation 

R P = { ( x, y ) : ∀ a ∈ P, f a ( x ) = f a ( y ) , x, y ∈ U } 
R P is called a equivalence relation and partitions U into a family

of a disjoint subsets; U/ R P is called a quotient set of U: 

/ R P = { X 1 , X 2 , X 3 , . . . , X n } 
In the traditional entropy definition, lo g 2 

1 
p( X i ) 

is used to mea-

sure the information quantity of the equivalence classes X i . Simi-

larly, we construct the definition of information quantity expressed

by equivalence classes based on rough set theory as follows: 

I ( X i ) = 1 − | X i | 
| U | (5)

|.| represents the cardinality of the set element and 0 ≤ I( x i ) < 1 −
1 

| U| . 
C  
efinition 4 [22] . For an information system S = ( U , A , f ) , P ⊆
 , U/ R P = { X 1 , X 2 , X 3 , . . . , X n } , the information entropy of attributes

 is defined as follows, 

 ( P ) = E ( X ) = 

n ∑ 

i=1 

| X i | 
| U | I ( X i ) = 

n ∑ 

i=1 

| X i | 
| U | 

(
1 −| X i | 

| U | 
)

= 

n ∑ 

i=1 

| X i | 
| U | 

| X i | C 
| U | (6)

In which C represents the complement. It is easy for E(X) to be

 rough entropy and 0 ≤ E(X) < 1 − 1 
| U| [27] . 

Similarly, if a partition of the feature space is defined as X =
 X 1 , X 2 , X 3 , . . . , X n } , and a partition of the labels space is marked as

 = { Y 1 , Y 2 , Y 3 , . . . , Y m 

} . According to the definition of I( X i ), we can

onstruct the conditional information I( x i | y j ) in multi-label learn-

ng as follows: 

 

(
X i | Y j 

)
= 

| X i 
c − Y j 

c | 
| U | (7)

Correspondingly, the space composed of (X, Y) is recorded

s ( X , Y ) = { X i Y j : X i ∈ X , Y j ∈ Y , i = 1 · · · n, j = 1 . . . m } in multi-label

earning, then each element ( X i , Y j ) on the (X, Y) is the average

alue of the joint probability weighted statistics from the amount

f information, therefore, a new definition about the conditional

ntropy on the set (X, Y) about the multi-label system, can be de-

ned as follows: 

 ( X | Y ) = 

n ∑ 

i =1 

m ∑ 

j=1 

| ( X i ∩ Y j ) | 
| U | I 

((
X i | Y j 

))

= 

n ∑ 

i =1 

m ∑ 

j=1 

| ( X i ∩ Y j ) | 
| U | 

| X i 
c − Y j 

c | 
| U | (8)

. The modeling of the non-equilibrium label completion 

atrix 

The number of unannotated items of a sample in the real world

s much larger than that of annotated ones, as seen in an example

hat a picture with known labels including green mountains and

lear water is more probable to contain unannotated forests , rather

han unannotated deserts or sea . We have found in many cases that

esearchers calculate the conditional information between anno-

ated and unannotated elements in each label set of the sample by

pplying Eq.(4) , to obtain the basic label confidence matrix. Sup-

ose the matrix of training samples Y = [ y 1 , · · · , y N ] 
T ∈ R 

N ×k and

 i = { 1 , −1 } k , and according to Eq. (4) of traditional entropy, we

ave: 

 i j = 

1 

H( l j | l i ) 
, b i j = 

1 

H( l j 
∣∣l i ) 

here l i and l i denote that the value of y i is “1”, and l i “−1”; i =
 , · · · , k , j = 1 , · · · , k and i 
 = j . 

According to Eq. (7) of new rough entropy, the new basic label

onfidence matrix can be redefined as follows: 

ew a i j = 

1 

I(l C 
j | l i ) 

, new b i j = 

1 

I( l j 
∣∣l C 

i 
) 

Therefore, newa ij , the new basic label confidence matrix, fo-

uses on the confidence of known labels to unknown ones, while

ewb ij the confidence of unknown labels to known ones, and it di-

ectly affects the quality of label sets. Since most multi-label data

ets are currently artificially annotated, annotating an unknown

ample may directly affect the quality of multi-label data sets. The

aper therefore introduces α, the unbalanced parameter and pro-

oses the algorithm of the non-equilibrium label confidence ma-

rix (NeLCM) based on weighted calculation of decreasing the ba-

ic label confidence matrix (BCLM) of newa ij and increasing that of

ewb ij : 

on f i j = −α × new a i j + (1 − α) × new b i j (9)
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Algorithm 1 Non-equilibrium label confidence matrix (NeLCM). 

Input: Y , the matrix of training samples, and α, the non-equilibrium parameter; 

Output: 
∧ 
Y , the NeLCM 

1) Y = { Y i | i = 1 , . . . , k } / ∗The label set of the training set ∗/ 

2) for each l i , l j 
3) While i 
 = j 

4) new a i j = 

1 
I(l C 

j 
| l i ) , new b i j = 

1 
I( l j | l C i ) / 

∗ Calculate newa ij and newb ij by employing Eq. (7). ∗/ 

5) elseif i = j

6) new a i j = new b i j = 0 ; / ∗Set the diagonal element as 0. ∗/ 

7) end 

8) Normalize the matrix a , b by row and obtain the corresponding matrix a, b 

9) While i = j

10) new a i j = new b i j = 1 ; 

11) end/ ∗Set the diagonal element as 1. ∗/ 

12) Con f i j = −α × new a i j + (1 − α) × new b i j ;/ 
∗Obtain the confidence matrix by employing Eq. (9). ∗/ 

13) end 

14) 
∧ 
Y = Con f × Y / ∗ non-equilibrium label confidence matrix ∗/ 

15) return 
∧ 
Y 
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We suggest the range of the unbalanced parameter 0 ≤α ≤ 0.5. 

Inspired by the idea of labels propagation dependency [23] , the

on-equilibrium label completion matrix is defined as follows: 

∧ 
 

= Con f × Y (10) 

Introduced non-equilibrium parameters, the algorithm of non-

quilibrium label confidence matrix is calculated as follows:

lgorithm 1 . 

. The modeling of non-equilibrium label completion matrix 

ombined with mean shift 

.1. Combined with mean shift of Gauss kernel function 

Mean shift clustering algorithm is a non-parametric clustering

echnology [24] , It does not need to determine the number of clus-

ers, nor does it limit the shape of clusters. In this paper, the most

idely used Gauss kernel function is added to the mean shift al-

orithm. 

 G ( x ) = 

1 √ 

2 π
e −

‖ x ‖ 2 
2 (11) 

The definition of multi-variate kernel density estimation is as

ollows: 

efinition 5. There are n data points X i , i = 1,2,3… N, in the D -

imensional space R d . The kernel density estimates of kernel func-

ion K ( x ) and window radius h is shown as Eq. (12) . 

f (x ) = 

1 

n h 

d 

n ∑ 

i =1 

K 

(
x − x i 

h 

)
(12) 

The gradient of kernel density estimation is obtained with Eq.

13) as follows: 

f (x ) = 

2 

n ∑ 

i =1 

(x − x i ) k 
′ 
(∥∥ x i −x 

h 

∥∥2 
)

n h 

d+2 
(13) 

Suppose g(x ) = −k ′ (x ) , G (x ) = g( ‖ x ‖ 2 ) , then Eq. (13) is replaced

y Eq. (14) as follows: 

f (x ) = 

2 

n ∑ 

i =1 

( x i − x ) G 

(
x i −x 

h 

)
n h 

d+2 

= 

2 

h 

2 

n ∑ 

i =1 

( x i − x ) G 

(
x i −x 

h 

)
n 

n ∑ 

i =1 

G 

(
x i −x 

h 

)
n ∑ 

i =1 

G 

(
x i −x 

h 

)
n h 

d 
(14) 
If we decompose Eq. (14) , we can get the offset vector of mean

hift as Eq. (15) follows: 

(x ) = 

n ∑ 

i =1 

x i G 

(
x i −x 

h 

)
n 

n ∑ 

i =1 

G 

(
x i −x 

h 

) − x (15) 

The M ( x ) vector always points to the maximum direction of the

ensity gradient, so that Eq. (15) can be decomposed to Eq. (16) as

ollows. 

 (x ) = 

n ∑ 

i =1 

x i G 

(
x i −x 

h 

)
n 

n ∑ 

i =1 

G 

(
x i −x 

h 

) (16) 

Finally, the iterative Eq. (17) can be obtained as follows. 

 ( x ) = m ( x ) − x (17) 

.2. Multi-label classifier modeling combined with mean shift 

Given a multi label training set S = { ( x 1 , Y 1 ) , . . . ( x N , Y N ) } , where

 i ∈ X is a single instance, Y i ∈ y is a set x i of associated labels, and

he goal of the multi label learning system is to learn a function h :

 → 2 y from S , which is used to predict a label set for an unknown

nstance. 

In this paper, traditional Euclidean distance is used for similar-

ty computation to measure the similarity between two instances

 i and x j features, and the similarity matrix D E is defined as fol-

ows: 

 E ( x i , x j ) = 

( 

d ∑ 

h =1 

(x h i − x h j ) 
2 

) 

(18) 

mong them, x h 
i 

and x h 
j 

represent the h -dimension of instance x i 
nd x j respectively, and the Euclidean distance d = D E is introduced

nto the Eq. (15) as follows: 

(d) = 

∑ n 
i =1 d i G 

(
d i −d 

h 

)
∑ n 

i =1 G 

(
d i −d 

h 

) − x (19) 

Then the iterative Eq. (17) of mean shift algorithm is rewritten

s: 

 ( d ) = m ( d ) − d (20) 

Therefore, the mean shift algorithm combined with the Gauss

ernel function is as follows Algorithm 2 . 
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Algorithm 2 Gaussian kernel function with mean shift (GMS). 

Input: Multi-label data S = { ( x 1 , Y 1 ) , . . . ( x N , Y N ) } and the size of Gauss kernel window h ; 

Output: Cluster M t and cluster center C j (t = 1 , 2 , ..., k, j = 1 , 2 , ..., k ) 

The description about the algorithm: GMS( S, h ) 

1) for each x i , x j ∈ S 
2) d i = d E ( x i , x j ) ; / 

∗Calculating the Euclidean distance between examples by Eq. (18) ∗/ 

3) end for 

4) repeat iterative Eq. (20) 

5) until M t doesn’t change / ∗Iteration stop ∗/ 

6) return M t , C j 
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In the training set, we measure the similarity matrix D E be-

tween samples according to Eq. (17) , and then by GMS algo-

rithm. The similarity matrix D E is divided into t intersecting clus-

ters {M 1 ,M 2 , ���,M t }, and then converted to a D -dimension vector

M x i (l) = [ ϕ 1 ( x i ) , ϕ 2 ( x i ) , · · · , ϕ d ( x i ) ] 
T . ϕ j ( x i ) = D E ( x i , C j ) is used to

calculate the Euclidean distance C j of the instance i and j . Cluster

centers C j = { C 1 , C 2 , · · · , C j } , t, j = 1 , 2 , ..., k . C j is defined as follows:

 j = arg min 

x i ∈ D E 

∑ 

x j ∈ D E 
D E ( x i , x j ) (21)

The weight W is obtained by minimizing the sum of squares

error functions: 

f (i, l) = w 

T 
l · M x i (22)

Considering the improvement of generalization ability of multi-

label classifiers, the NeLC algorithm is used to complement the

original Y set. 

∧ 
 

= Con f × Y (23)

E = 

1 

2 

m ∑ 

i =1 

∑ 

l∈ y 
( f (i, l) − ∧ 

Y (i, l)) 
2 

(24)

By using the reconstruction error of the non-equilibrium la-

bels on the training set according to the minimization Eq.(24) , the

weights w l ( l ∈ y ) are used to predict the labels of unknown in-

stances. The objective function of Eq. (24) is differentiated into w l 

and the derivative is zero. Then the normal equation of the least

squares problem is defined as follows. 

( �T �) · W = �T 
∧ 
Y 

� = [ ϕ il ] m ×N , ϕ il = M x i (l) 
(25)

After obtaining the best fitting model, the training of algorithm

is finished. The labels of the new sample h are predicted as fol-

lows: 

 

∗ = 

{
l | f ( h, l ) = w 

T 
l · M x i > 0 , l ∈ Y, x i ∈ h 

}
(26)

Therefore, the algorithm NeLC-MS based on the Non-

equilibrium Labels Completion model is presented. The corre-

sponding algorithm is described as follows: Algorithm 3 . 

5. NeLC-MS experiment and its results 

5.1. Description of the experimental data sets 

In order to illustrate the effectiveness of the algorithm NeLC-

MS, we choose 14 sets of data sets such as Birds, Emotions and 6

Mulan datasets and 7 sets of Yahoo Web Page s and Image . The Mu-

lan dataset is from http://mulan.sourceforge.net/datasets-mlc.html .

The Yahoo Web Pages dataset is from http://www.kecl.ntt.co.jp/as/

members/ueda/yahoo.tar . The Image dataset is from http://cse.seu.

edu.cn/PersonalPage/zhangml/ . The specific description is shown in

Table 1 . 
.2. The experimental environment and evaluation indicators 

The experiment is conducted on a computer equipped with

indows 7 Operation System, Intel®Core (TM) i5-2380p, and

.10 GHz CPU, and in Matlab2016a for the operation of experi-

ental codes. We choose 5 commonly-applied evaluation crite-

ia, namely, Average Precision, Coverage, Hamming Loss, One-Error,

nd Ranking Loss [25] to evaluate the MLLA performance. The

riteria are abbreviated as AP ↑ , CV ↓ , HL ↓ , OE ↓ , and RL ↓ for con-

enience, where ↑ indicates the higher value, the better, and ↓ in-

icates the lower, the better. Suppose h ( · ), the multi-label classi-

er; f ( · , · ), the prediction function; rank f , the ranking function;

 = { ( x i , Y i | 1 ≤ i ≤ n ) } , the MLD. The formal methods of these cri-

eria are defined as follows: 

(1) Average Precision (AP): Evaluating the average score of cor-

ect labels ranked in the specific label y ∈ Y i : 

 P D ( f ) = 

1 

n 

n ∑ 

i =1 

1 

| Y i | 
∑ 

y ∈ Y i 

∣∣{ ran k f ( x i , y 
′ ) ≤ ran k f ( x i , y ) , y 

′ ∈ Y i } 
∣∣

ran k f ( x i , y ) 

(2) Coverage (CV): An indicator to measure the average step

umber for traversing all related labels of the given sample: 

 V D ( f ) = 

1 

n 

n ∑ 

i =1 

max y ∈ Y i ran k f ( x i , y ) − 1 

(3) Hamming Loss (HL): An indicator to measure real labels in

 single label and wrong matches of prediction labels of the given

ample: 

 L D (h ) = 

1 

n 

n ∑ 

i =1 

1 

| Y | | h ( x i ) 
 = Y i | 

(4) One-Error (OE): Evaluating the occurrence number of labels

hen top-ranking labels are not correct: 

 E D ( f ) 
1 

n 

n ∑ 

i =1 

[[ arg max y ∈ Y f ( x i , y )] / ∈ Y i ] 

(5) Ranking Loss (RL): An indicator to evaluate the circum-

tances where the ranking of uncorrelated labels of a given sample

s lower than that of correlated labels: 

 L D ( f ) = 

1 

n 

n ∑ 

i =1 

1 

| Y i | 
∣∣Y i ∣∣

×
∣∣{ ( y 1 , y 2 ) ∣∣ f ( x i , y 1 ) ≤ f ( x i , y 2 ) , ( y 1 , y 2 ) ∈ Y i × Y i } 

∣∣
.3. Choice of algorithms and the configuration of related parameters 

In order to verify the performance of the proposed algo-

ithm, the NeLC-MS algorithm is compared with 5 multi-label

ainstream classification algorithms, which are ML-KNN, IMMLA,

ankSVM, MLFE and LIFT, respectively. In the NeLC-MS algorithm,

he Non-equilibrium parameter is set to be [0,0.5]. In the ML-KNN

lgorithm, the nearest neighbor K and the smoothing parameter s

http://mulan.sourceforge.net/datasets-mlc.html
http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar
http://cse.seu.edu.cn/PersonalPage/zhangml/
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Algorithm 3 Multi-label learning algorithm of non-equilibrium labels completion with mean shift (NeLCMS). 

Input: S = { ( x i , Y i ) | 1 ≤ i ≤ N } , the train data set; S ∗ = { ( x i , Y i ) | 1 ≤ i ≤ M } , the test data set; Clusters M t , Clusters centers C j 
Output: Y ∗ , the prediction label. 

1) Y = { Y i | i = 1 , · · · , k } / ∗ The training label set ∗/ 

2) for each x i ∈ S 
3) 

∧ 
Y / ∗ according to the Algorithm 1 ∗/ 

4) end 

5) for each x i ∈ R d 
6) x i → M x i (l) = [ φ1 ( x i ) , φ2 ( x i ) , · · · , φt ( x i ) ] 

T / ∗The feature instance is converted to D -dimensional vector ∗/ 

7) φi ( x i ) = D E ( x i , C j ) ;/ 
∗The Euclidean distance of the example x i with clusters center C j 

∗/ 

8) E = 

1 
2 

m ∑ 

i =1 

∑ 

l∈ y 
( f (i, l) − ∧ 

Y (i, l)) 
2 

; 

9) end for 

10) for each x i ∈ S ∗
11) 

∗
Y = { l | f (h, l ) = w 

T 
l 

· M x i > 0 , l ∈ Y, x i ∈ h } ;/ ∗ the label exists when the prediction value f l (x ∗
i 
) > 0 ∗/ 

12) end for 

13) return 
∗

Y 

Table 1 

Detailed descriptions of multi-labels data sets. 

Data set Training sets Test sets No. of labels No. of features Average no. of labels Label density Fields 

Birds 322 323 20 260 1.470 0.074 Audio 

Emotions 391 202 6 72 1.868 0.311 Music 

Enron 1123 579 53 1001 3.378 0.064 Text 

Natural scene 10 0 0 10 0 0 5 294 1.236 0.247 Images 

Image 10 0 0 10 0 0 5 294 1.236 0.245 Images 

Yeast 1500 917 14 103 4.237 0.303 Biology 

Arts 20 0 0 30 0 0 26 462 1.636 0.063 Text 

Business 20 0 0 30 0 0 30 438 1.588 0.053 Text 

Recreation 20 0 0 30 0 0 22 606 1.423 0.065 Text 

Reference 20 0 0 30 0 0 33 793 1.169 0.035 Text 

Science 20 0 0 30 0 0 40 743 1.451 0.036 Text 

Social 20 0 0 30 0 0 39 1047 1.283 0.033 Text 

Society 20 0 0 30 0 0 26 462 1.692 0.063 Text 

Corel5K 40 0 0 10 0 0 374 499 3.522 0.009 Images 

Table 2 

AP ( ↑ ) results of all 14 datasets. 

Data set NeLC-MS MLKNN IMLLA RankSVM MLFE LIFT 

Birds 0.7585 (1) 0.6750 (4) 0.6649 (5) 0.6112 (6) 0.7508 (2) 0.7016 ± 0.0056 (3) 

Emotions 0.7974 (1) 0.7878 (2.5) 0.7878 (2.5) 0.7503 (5) 0.7822 (4) 0.7456 ± 0.0082 (6) 

Enron 0.7028 (2) 0.6332 (5) 0.6476 (4) 0.5225 (6) 0.7125 (1) 0.6881 ± 0.0033 (3) 

Image 0.8374 (1) 0.7908 (5) 0.8082 (4) 0.7894 (6) 0.8237 (2) 0.8174 ± 0.0034 (3) 

Natural scene 0.8367 (1) 0.7649 (6) 0.7987 (4) 0.7689 (5) 0.8166 (2) 0.8063 ± 0.0023 (3) 

Yeast 0.7637 (1) 0.7567 (3.5) 0.7567 (3.5) 0.7566 (5) 0.7545 (6) 0.7591 ± 0.0015 (2) 

Arts 0.6095 (1) 0.5455 (5) 0.4817 (6) 0.5690 (4) 0.5912 (3) 0.6072 ± 0.0039 (2) 

Business 0.8807 (3) 0.8819 (2) 0.8660 (6) 0.8711 (5) 0.8775 (4) 0.8827 ± 0.0013 (1) 

Computers 0.6979 (2) 0.6286 (4) 0.6105 (6) 0.6150 (5) 0.6 84 8 (3) 0.6980 ± 0.0048 (1) 

Recreation 0.6172 (2) 0.4482 (5) 0.4066 (6) 0.5686 (4) 0.6104 (3) 0.6213 ± 0.0032 (1) 

Reference 0.7102 (1) 0.6141 (5) 0.5842 (6) 0.6250 (4) 0.6977 (3) 0.6991 ± 0.0021 (2) 

Science 0.5910 (1) 0.5371 (4) 0.4282 (6) 0.4 84 9 (5) 0.5689 (3) 0.5882 ± 0.0024 (2) 

Society 0.6322 (1) 0.6137 (3) 0.5762 (6) 0.5917 (5) 0.6095 (4) 0.6317 ± 0.0019 (2) 

Corel5K 0.2643 (1) 0.2384 (4) 0.2283 (5) N/A 0.2432 (3) 0.2510 ± 0.0038 (2) 

Average Ranking 1.38 4.14 5 5 3.07 2.35 

Table 3 

CV ( ↓ ) results of all 14 datasets. 

Data set NeLC-MS MLKNN IMLLA RankSVM MLFE LIFT 

Birds 2.8885 (2) 3.6563 (3) 3.9102 (5) 4.2446 (6) 2.8824 (1) 3.6641 ± 0.1247 (4) 

Emotions 1.8515 (1) 1.8762 (3) 1.8663 (2) 2.2426 (6) 1.9703 (4) 2.1752 ± 0.0491 (5) 

Enron 13.1675 (3) 13.3713 (4) 15.1537 (6) 14.8411 (5) 12.5250 (2) 12.1149 ± 0.0693 (1) 

Image 0.7940 (1) 0.9530 (5) 0.90 0 0 (4) 0.9760 (6) 0.8190 (2) 0.8584 ± 0.0091 (3) 

Natural scene 0.7980 (1) 1.0520 (5) 0.9430 (4) 1.0550 (6) 0.8440 (2) 0.8957 ± 0.0044 (3) 

Yeast 6.3871 (3) 6.4318 (4) 6.2672 (2) 6.2475 (1) 6.5027 (6) 6.4689 ± 0.0254 (5) 

Arts 5.6993 (5) 5.1163 (3) 6.1877 (6) 4.7070 (2) 5.6857 (4) 4.6974 ± 0.0733 (1) 

Business 2.6743 (4) 2.1693 (2) 2.9090 (6) 2.2877 (3) 2.7190 (5) 2.1121 ± 0.0283 (1) 

Recreation 4.7023 (4) 5.1720 (5) 5.5460 (6) 3.9350 (2) 4.5443 (3) 3.8044 ± 0.0348 (1) 

Reference 3.9440 (4) 3.4927 (3) 4.0067 (6) 2.9730 (2) 4.0130 (5) 2.7317 ± 0.0353 (1) 

Science 7.0833 (4) 5.8567 (2) 8.1877 (6) 6.0240 (3) 7.3880 (5) 5.5897 ± 0.0700 (1) 

Society 6.5010 (6) 5.3357 (2) 6.2433 (4) 5.3160 (1) 6.3313 (5) 5.3604 ± 0.0541 (3) 

Corel5K 183.9030 (3) 148.0400 (2) 190.5390 (5) N/A 184.7130 (4) 144.8499 ± 1.1037 (1) 

Average Ranking 3.21 3.36 4.86 3.69 3.77 2.21 
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Table 4 

HL ( ↓ ) results of all 14 datasets. 

Data set NeLC-MS MLKNN IMLLA RankSVM MLFE LIFT 

Birds 0.0466 (1) 0.0579 (5) 0.0577 (4) 0.0893 (6) 0.0502 (3) 0.0499 ± 0.0 0 08 (2) 

Emotions 0.2129 (2) 0.2195 (3) 0.2030 (1) 0.2946 (6) 0.2459 (5) 0.2372 ± 0.0052 (4) 

Enron 0.0463 (2) 0.0517 (5) 0.0511 (4) 0.0641 (6) 0.0454 (1) 0.0465 ± 0.0 0 03 (3) 

Image 0.1440 (1) 0.1740 (5) 0.1640 (4) 0.1756 (6) 0.1554 (2) 0.1598 ± 0.0020 (3) 

Natural scene 0.1544 (1) 0.1866 (6) 0.1668 (4) 0.1854 (5) 0.1624 (2) 0.1649 ± 0.0018 (3) 

Yeast 0.1932 (1) 0.1987 (4) 0.1948 (2) 0.2024 (5) 0.2038 (6) 0.1974 ± 0.0010 (3) 

Arts 0.0545 (1) 0.0604 (4) 0.0624 (5) 0.0659 (6) 0.0576 (3) 0.0546 ± 0.0 0 02 (2) 

Business 0.0256 (2) 0.0271 (4) 0.0278 (5) 0.0291 (6) 0.0254 (1) 0.0262 ± 0.0 0 01 (3) 

Computers 0.0349 (2) 0.0415 (4) 0.0430 (6) 0.0441 (5) 0.0358 (3) 0.0343 ± 0.0 0 01 (1) 

Recreation 0.0546 (1) 0.0628 (4) 0.0641 (5) 0.0665 (6) 0.0571 (3) 0.0548 ± 0.0 0 02 (2) 

Reference 0.0252 (1) 0.0319 (4) 0.0350 (5) 0.0356 (6) 0.0256 (2) 0.0256 ± 0.0 0 02 (3) 

Science 0.0305 (1) 0.0329 (4) 0.0351 (6) 0.0411 (5) 0.0313 (2) 0.0316 ± 0.0 0 01 (3) 

Society 0.0511 (1) 0.0536 (4) 0.0572 (5) 0.0603 (6) 0.0531 (3) 0.0525 ± 0.0 0 02 (2) 

Corel5K 0.0089 (1) 0.0093 (2) 0.0096 (4) N/A 0.0097 (5) 0.0095 ± 0.0002 (3) 

Average Ranking 1.29 4.14 4.29 5.69 3.00 2.64 

Table 5 

OE ( ↓ ) results of all 14 datasets. 

Data set NeLC-MS MLKNN IMLLA RankSVM MLFE LIFT 

Birds 0.2817 (1) 0.3994 (4) 0.4272 (5) 0.5325 (6) 0.3034 (2) 0.3458 ± 0.0062 (3) 

Emotions 0.3069 (1.5) 0.3168 (3.5) 0.3218 (5) 0.3168 (3.5) 0.3069 (1.5) 0.3644 ± 0.0110 (6) 

Enron 0.2263 (2) 0.2936 (5) 0.2867 (4) 0.4870 (6) 0.2159 (1) 0.2511 ± 0.0111 (3) 

Image 0.2470 (1) 0.3230 (6) 0.2960 (4) 0.3160 (5) 0.2790 (2) 0.2798 ± 0.0071 (3) 

Natural scene 0.2560 (1) 0.3640 (6) 0.3070 (4) 0.3500 (5) 0.2910 (2) 0.3011 ± 0.0052 (3) 

Yeast 0.2366 (3.5) 0.2410 (5) 0.2312 (1) 0.2366 (3.5) 0.2356 (2) 0.2412 ± 0.0034 (6) 

Arts 0.4740 (1) 0.5753 (5) 0.6597 (6) 0.5627 (4) 0.4953 (3) 0.4920 ± 0.0063 (2) 

Business 0.1147 (1.5) 0.1190 (4) 0.1297 (5) 0.1367 (6) 0.1147 (1.5) 0.1222 ± 0.0023 (3) 

Computers 0.3617 (2) 0.4457 (4) 0.4623 (5) 0.4830 (6) 0.3770 (3) 0.3614 ± 0.0069 (1) 

Recreation 0.4730 (1) 0.7142 (5) 0.7653 (6) 0.5737 (4) 0.4860 (3) 0.4815 ± 0.0052 (2) 

Reference 0.3640 (1) 0.4837 (4) 0.5123 (5) 0.5143 (6) 0.3820 (2) 0.3865 ± 0.0020 (3) 

Science 0.4923 (1) 0.5747 (4) 0.7077 (6) 0.6533 (5) 0.5187 (3) 0.5103 ± 0.0040 (2) 

Social 0.2800 (1) 0.3197 (4) 0.4070 (5) 0.4333 (6) 0.2923 (2) 0.2941 ± 0.0033 (3) 

Society 0.3927 (1) 0.4347 (4) 0.4753 (5) 0.4830 (6) 0.4273 (3) 0.4059 ± 0.0019 (2) 

Corel5K 0.6600 (1) 0.7350 (5) 0.7130 (3) N/A 0.6930 (2) 0.7141 ± 0.0114 (4) 

Average Ranking 1.39 4.61 4.5 5.15 2.14 3.07 

Table 6 

RL ( ↓ ) results of all 14 datasets. 

Data set NeLC-MS MLKNN IMLLA RankSVM MLFE LIFT 

Birds 0.1028 (2) 0.1358 (4) 0.1455 (5) 0.1629 (6) 0.1011 (1) 0.1327 ± 0.0066 (3) 

Emotions 0.1625 (1) 0.1692 (2) 0.1693 (3) 0.2244 (5) 0.1803 (4) 0.2271 ± 0.0107 (6) 

Enron 0.0847 (3) 0.0944 (4) 0.1039 (5) 0.1132 (6) 0.0790 (1) 0.0804 ± 0.0 0 08 (2) 

Image 0.1326 (1) 0.1715 (5) 0.1593 (4) 0.1766 (6) 0.1404 (2) 0.1485 ± 0.0021 (3) 

Natural scene 0.1347 (1) 0.1952 (5) 0.1667 (4) 0.1965 (6) 0.1452 (2) 0.1559 ± 0.0012 (3) 

Yeast 0.1696 (2.5) 0.1733 (5) 0.1662 (1) 0.1696 (2.5) 0.1777 (6) 0.1697 ± 0.0011 (4) 

Arts 0.1474 (4) 0.1393 (3) 0.1743 (6) 0.1243 (2) 0.1489 (5) 0.1208 ± 0.0018 (1) 

Business 0.0443 (4) 0.0370 (2) 0.0562 (6) 0.0402 (3) 0.0464 (5) 0.0346 ± 0.0 0 01 (1) 

Recreation 0.1623 (4) 0.1956 (5) 0.2123 (6) 0.1408 (2) 0.1568 (3) 0.1310 ± 0.0015 (1) 

Reference 0.0933 (4) 0.0906 (3) 0.1049 (6) 0.0743 (2) 0.0970 (5) 0.0661 ± 0.0010 (1) 

Science 0.1329 (4) 0.1129 (2) 0.1666 (6) 0.1152 (3) 0.1399 (5) 0.1036 ± 0.1008 (1) 

Social 0.0767 (4) 0.0550 (2) 0.0891 (6) 0.0619 (3) 0.0779 (5) 0.0539 ± 0.0013 (1) 

Society 0.1507 (4) 0.1328 (3) 0.1590 (6) 0.1278 (1) 0.1547 (5) 0.1286 ± 0.0012 (2) 

Corel5K 0.1543 (1) 0.1735 (3) 0.2387 (5) N/A 0.2317 (4) 0.1689 ± 0.0019 (2) 

Average Ranking 2.82 3.5 4.93 3.58 3.79 2.21 
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are set to 15 and 1, respectively. In the IMMLA algorithm, the near-

est neighbor number k is set to 15. In RankSvm, the cost param-

eter is set to 1, and RBF is selected as the kernel function. In the

MLFE algorithm, the kernel function selects RBF, and the kernel pa-

rameters β1 , β2 and β3, are selected from {1,2. 10}, {1,10,15} and

{1,10}, which are cross validated on the training set, respectively.

In the LIFT algorithm, the parameter r = 0.1 and the kernel func-

tion is selected to be Linear. Because the result of LIFT algorithm is
nstable, in order to improve the accuracy, run LIFT 10 times, and

he average (mean) and standard deviation (STD) are given in our

xperiments. 

.4. Experimental results 

The experimental results of the NeLC-MS and other 5 algo-

ithms on 14 data sets are shown in Tables 2 –6 , where the
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Table 7 

AP ( ↑ ) results of various data sets with different parameters. 

Data set α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 

Birds 0.7587 0.7585 0.7585 0.7596 0.7604 

Emotions 0.7917 0.7925 0.7931 0.7942 0.7974 

Natural scene 0.8361 0.8374 0.8373 0.8388 0.8367 

Arts 0.6081 0.6084 0.6086 0.6095 0.6099 

Table 8 

CV ( ↓ ) results of various data sets with different parameters. 

Data Set α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 

Birds 2.8854 2.8824 2.8885 2.7183 2.7554 

Emotions 1.8515 1.8416 1.8515 1.8416 1.8515 

Natural scene 0.8040 0.7990 0.7990 0.7920 0.7980 

Arts 5.8267 5.7797 5.7380 5.6993 5.6603 

Table 9 

HL ( ↓ ) results of various data sets with different parameters. 

Data set α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 

Birds 0.0676 0.0607 0.0466 0.0500 0.0475 

Emotions 0.2616 0.2409 0.2285 0.2211 0.2129 

Natural scene 0.2016 0.1794 0.1644 0.1580 0.1544 

Arts 0.0607 0.0589 0.0570 0.0545 0.0546 
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Table 10 

OE ( ↓ ) results of various data sets with different parameters. 

Data set α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 

Birds 0.2817 0.2817 0.2817 0.2879 0.2848 

Emotions 0.3267 0.3267 0.3218 0.3218 0.3069 

Natural scene 0.2570 0.2540 0.2540 0.2520 0.2560 

Arts 0.4753 0.4757 0.4750 0.4740 0.4733 

Table 11 

RL ( ↓ ) results of various data sets with different parameters. 

Data set α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 

Birds 0.1026 0.1024 0.1028 0.0920 0.0925 

Emotions 0.1632 0.1634 0.1639 0.1631 0.1625 

Natural scene 0.1361 0.1349 0.1348 0.1330 0.1347 

Arts 0.1510 0.1496 0.1485 0.1474 0.1464 
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s  
anking of the experimental results corresponding to each data set

s shown in Tables 2 –6 in the form of subscripts, and the best one

s highlighted in bold. The average ranking of each algorithm in

ll data sets is given in the last row, where the lower the average

anking, the better the algorithm (Note: No ± value indicates that

he algorithm is stable with no change in the total 10 operations;

RankSVM does not yield results in 48 h, so N/A is used.). 

It is found in Table 2 that the average ranking of the NeLC-MS

lgorithm in all 13 data sets is the best. As shown in Table 3 , the

eLC-MS algorithm performs poorly on the 7 text data sets of the

ahoo , but has a better performance on the 6 data sets of the Ya-

oo , and its CV ranks the second best. In terms of the Hamming

oss index, as shown in Table 4 , the NeLC-MS algorithm ranks sec-

nd on Emotions, Enron, Business , and Computers , and the other

ata sets are all optimal. In terms of the OE shown in Table 5 ,

n addition to the Enron, Yeast and Computes data sets, the perfor-

ance is not the best and the other data sets have the best per-

ormance. the NeLC-MS algorithm is shown on the RL of the 14

ata sets, as shown in Table 6 , it has a better performance on the

 data sets of the Mulan , and the whole performance is the second

est. 

. Correlational analyses and statistical hypothesis test 

In order to further illustrate the effectiveness of the proposed

ethod, the parameter sensitivity analysis, the stability analysis

nd hypothesis testing of the algorithm are carried out based on

he experimental results. 

.1. Parameter sensitivity analysis 

According to the idea of our method, the value of non-

quilibrium parameter is selected in the interval [0.1,0.5]. Since the

alues of non-equilibrium parameters have a certain influence on

he algorithm in this paper, Tables 7–11 give the effect of non-

quilibrium parameters on 4 data sets, such as Emotions, Natural
cene et al. The text highlighted in bold indicates the best results

n the experiment. 

It is not difficult to observe from Tables 7 to 11 that the val-

es of the non-equilibrium parameters can be obtained with bet-

er values in the interval [0.3,0.5], illustrating the importance of

on-equilibrium parameters to mining information contained in

nknown labels. 

.2. Stability analysis 

In order to verify the stability of different multi label learning

lgorithms, the spider net diagram is used to represent the stabil-

ty analysis of algorithm [26] . Because the results of the predic-

ion classification are very different in different data sets for dif-

erent evaluation indicators, we standardize the results between

0.1,0.5] as a general standard. Finally, the stability index is rep-

esented through normalized values. Fig. 1 shows the stability of

he algorithm under different data sets for each evaluation index

Note: RankSVM did not get results on the Corel5K dataset, so the

ata set was not considered in stability analysis.). 

As shown in Fig. 1 , we can observe: (1) for AP, NeLC-MS obtains

 fairly stable effect between the stable finger values of the 12 data

ets in the [0.45,0.5]. (2) for CV, the stable value of NeLC-MS on 4

atasets is between [0.45,0.5], and the solution is quite stable com-

ared to the MLFE and IMMLA algorithms. (3) for the HL, NeLC-MS

an get more stable results on 9 datasets, and the other 4 datasets

re also stable in [0.4,0.5], which are more stable than MLKNN, IM-

LA, RankSVM, MLFE and LIFT algorithms. (4) for the OE, NeLC-MS

an provide a more stable solution on 8 data sets, and the remain-

ng 3 data sets are also in [0.4,0.5]. (5) for RL, NeLC-MS achieves

 stable solution on 5 data sets and is more stable than MLFE and

MLLA algorithms. Therefore, the results in Fig. 1 show that NeLC-

S is more stable and has better prediction performance. 

.3. Statistical hypothesis test 

We statistically employ the Nemenyi Test [18,27] with signifi-

ance of 5% to compare the experimental results of the NeLC-MS

nd other algorithms in all 13data sets (Note: RankSVM did not get

esults on the Corel5K dataset, so the data set was not considered

n stability analysis). We also believe there is no significant dif-

erence between any two algorithms when their difference of the

verage ranking in all data sets is smaller or equal to the critical

ifference (CD), or there is significant difference. Every two algo-

ithms are compared in terms of different evaluation indicators, as

hown in Fig. 2 , where the CD on the top line equals 2.0913, and
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Fig. 1. The stability index values obtained on 13 benchmark multi-label datasets with different evaluation metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  
the algorithms with no significant difference are connected by col-

orful lines. The algorithms are ranked in a decreasing order from

left to right in each figure. 

For each algorithm, there are 25 comparative results (5 compar-

ative algorithms and 5 evaluation criteria). It is found in Fig. 2 that:

• For the NeLC-MS algorithm, there is no statistically significant

difference from the other algorithms about 64%. In terms of

the AP, as shown in Fig. 2 (a), there is no significant difference

between the NeLC-MS algorithm and the LIFT and MLFE algo-

rithms. In terms of the CV, as shown in Fig. 2 (b), there is no sig-

nificant difference between the NeLC-MS algorithm and other

algorithms. In terms of the HL, as shown in Fig. 2 (c), NeLC-MS

algorithm and LIFT and MLFE algorithms do not have a signif-

icant difference. In terms of OE, as shown in Fig. 2 (d), there is
no significant difference between the NeLC-MS algorithm and

the LIFT and MLFE algorithms. In terms of the RL, as shown in

Fig. 2 (e), there is no significant difference between the NeLC-

MS algorithm and the other algorithms. Therefore, the NeLC-MS

is superior to other algorithms in 36% cases. 

• For the LIFT algorithm, there is no statistical difference between

it and other algorithms in 72% of the conditions, but in 24%

cases, it is superior to other algorithms. 

• For the MLFE algorithm, there is no statistical difference be-

tween it and other algorithms in 84% of the conditions, but in

16% cases, it is superior to other algorithms. 

It is not difficult to see that NeLC-MS algorithm is ranked first

n AP, CV, HL, OE and RL. It can be concluded that the NeLC-MS is
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Fig. 2. Comparison of the performance of algorithms. 
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ptimized and statistically better than other algorithms in 36% of

he conditions, and it is not worse than other algorithms. 

From the above analysis, the NeLC-MS algorithm has the best

erformance, and the experiment further illustrates the effective-

ess of the NeLC-MS algorithm. 

. Conclusion 

In multi-label classification learning, it is very important to

tudy the correlation between feature information and labels in

ulti label learning. In the sake of making full use of the correla-

ion, we introduced the unbalanced parameters, and proposed the

eLC-MS, Non-Equilibrium Label Completion with Mean Shift us-

ng a new rough entropy, which attempts to add the fuzzy rela-

ion between the features and the correlation between the labels

y the reconstruction input space, so that the related information

ontained in the feature space and the labels space can be fully in-

estigated. Although the new entropy cannot improve the accuracy

nd performance of the classifier, it has a simple calculation rela-

ive to the traditional entropy, and it can be used as an effective

easure in the study of multi-label correlation. The combination

f the unbalanced label confidence matrix and the nearest neigh-

or label space improves the quality of the nearest neighbor label

pace. Experimental results show that NeLC-MS algorithm is better

han some common multi-label learning algorithms. 

Because the new features cannot be theoretically guaranteed

nd have strong correlation between labels, the further work is to

tudy the relationship between the feature and label space, fully

xcavating the effective information contained in the input space,

nd combining these methods to build a unified multi label learn-

ng framework. 
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