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Abstract
Label-specific features learning is a multi-label learning framework that utilizes label feature extraction to solve a single
example where multiple class labels exist simultaneously. As an essential multi-label learning method, label correlation
learning has been widely used in multi-label classification learning. However, in the existing label-specific features learning,
the label correlation measurement often assumes that the label correlations are a global structure or that the label correlations
only have a local smoothness. In actual application scenarios, the two situations may occur together. This paper proposes a
multi-label classification method by joint Label-Specific features and Global and Local label correlation learning, named
LSGL. Firstly, we obtain the weight of the label-specific features of each class label utilizing the l1-norm and then learn
high-order global label correlation and label local smoothness. By adding manifold regularization terms, we fully utilize the
structural relationship between features and labels and mine global and local label association information. These processes
are carried out in a unified optimization model, and each part learns and promotes each other. Finally, in the low-dimensional
label-specific features representation learning is to carry out multi-label classification learning through the support vector
machine and the extreme learning machine, respectively. A comparative study with state-of-the-art approaches and statistical
hypothesis testing manifests the validity of the LSGL method and the features learned from label-specific features learning.

Keywords Multi-label label-specific features learning · Label correlations · Proximal gradient descent · Support vector
machine · Extreme learning machine

1 Introduction

Multi-label learning (MLL), as oneof the hotspots inmachine
learning research, has been widely used in many domains,
for example, image annotation, text classification, and gene
annotation (Wang et al. 2016; Zhang et al. 2018; Liu et al.
2018) (Al-Salemi et al. 2018; Gargiulo et al. 2019) (Guan
et al. (2018)), respectively. In a framework of MLL, a single
instance is associated with multiple class labels simultane-
ously, and its main challenge is how to learn an efficient
classification model that predicts a set of labels that may
exist for a new instance (Gibaja and Ventura 2015; Zhang
and Zhou 2013). Existing MLL approaches can be divided
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into problem transformation (PT) and algorithm adaptive
(AA) approaches Tsoumakas et al. (2009). The main idea
of the problem transformation approach is to convert one
or more single-label classification learning algorithms into
MLL approaches. Typical examples include the binary clas-
sification method (BR) Boutell et al. (2004) and the chain
classification method (CC) Read et al. (2011). The adap-
tive algorithm method improves the traditional single-label
classification algorithm to realize the classification of MLL
directly. Algorithm adaptation is currently the primary way
to solve MLL problems. Representative algorithms include
the lazy learning algorithmML-kNNZhang andZhou (2007)
and the kernel tricks learning algorithm RankSVM Elisseeff
and Weston (2002). RMLDM Rezaei-Ravari et al. (2021)
leverages dual-manifold regularization to construct a neural
network and simultaneously combines feature and label local
geometric structure mining for multi-label learning. In the
past research, MLL has made progress, but some problems
still need further study. Learning and utilizing the correlation
among labels are one of the critical issues currently recog-
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nized and concerned. The label correlation (LC) theory holds
that there is a specific correlation among labels Zhang et al.
(2019). For example, in a picture with the sky and sea labels,
in the MLL, it can be considered that the sky label may be
associated with the white cloud label and the sea and fish
labels are relatively large, and the correlation information
among labels can improve the performance of the classifier.

At present, there are a large number of methods to explore
the feasibility of using LC to improve the performance of
MLL, which is based on a probability model or an optimiza-
tion model to solve the problem. The existing MLL methods
can be systematically divided into the following three cat-
egories according to the LC considered Zhang and Zhou
(2013). The strategy of the first-order approach is to solve
MLL problems without considering LC, such as BPMLL
Zhang and Zhou (2006), CLR Fürnkranz et al. (2008), and
MLRL Zhang and Yeung (2013); the second-order strategy
approach considers that the correlations among the labels
appear in pairs, such as Huang et al. (2016); Weng et al.
(2018); the higher-order strategy approach considers the cor-
relations among all class labels or a subset of class labels,
such as Charte et al. (2014), Cheng et al. (2018), Jun Xie
et al. (2019), He et al. (2019), Xu et al. (2014). These stud-
ies show that LC can effectively improve the performance of
multi-label classification algorithms.

However, most of the existing MLL methods on the
hypothesis of LC are considered global label correlation. In
other words, they utilize globally consistent LC during the
learning process. In the real world, the differences among
instances can lead to different correlations among labels. In
other words, due to the similarity among instances, the corre-
lation among different labels may lead to local LC.ML-LOC
Huang and Zhou (2012) first proposed the concept of local
LC when solving MLL problems, which believed that there
would be a local correlation among labels due to different
instances. Therefore, a large number of scholars have con-
sidered the global and local LC together.

To this end, this paper proposes a label-specific features
algorithm that combines global and local LC (LSGL). The
main contributions of this paper are as follows:

1. Consider learning label-specific features and global and
local label correlations under a unified framework, which
promotes and influences each other.

2. Through a reliable hypothesis, there is often a spe-
cific relationship between the local characteristics of the
examples and the local LC, and this connection is more
evident in learning label-specific features.

3. The experimental results on 15 benchmark multi-label
data sets verify that our algorithm is more competitive
than the state-of-the-art algorithms and converges with
fewer iterations.

The remainder of this paper is organized as follows: In
Sect. 2,we reviewed the relatedwork. In Sect. 3,we introduce
the specific framework of algorithm learning proposed in this
paper. In Sect. 4, we introduce the optimization process of
the algorithm. The results of comparative experiments and
specific analyses are illustrated in Sect. 5. Finally, Sect. 6
concludes this paper.

2 Related work

2.1 Label-specific features learning

Label-specific features learning is a novel multi-label clas-
sification direction in only a few years, which assumes each
label has its unique feature subset representation. LIFT
Zhang and Lei (2014) solves the multi-label classification
problem from the perspective that each class label has its
unique attributes. For example, we utilize the color and tex-
ture features to distinguish the blue sky and white clouds
in pictures. LIFT performs cluster analysis on the specific
feature’ positive and negative instances of the labels and
utilizes the distance between the original instance and the
positive instance and the counterexample center instance to
represent the new feature. Based on LIFT, many scholars
have made improvements. For example, FRS-LIFT Suping
et al. (2016) utilizes fuzzy rough sets to reduce the label-
specific features further. FRS-SS-LIFT Suping et al. (2016)
reduces the label-specific features based on sample selection.
The above algorithms do not consider the label correlations
information. MLC-LFLCMa et al. (2021) extracts two-level
label-specific features in a unified model framework. MLC-
LFLC constructs a classifier with a certain distinguishability
between instances with the same label and a certain degree
of connectivity between instances with different labels. LF-
LPLC Weng et al. (2018) has developed MLL based on
label-specific features and local pairwise label correlation.
SLEFQiao et al. (2017) finds second-order label correlations
and adds sparse regular learning label-specific features to the
model parameters. MLSF Sun et al. (2016) combines meta-
label learning and label-specific feature learning through a
two-step learning method. The first step is tantamount to
constructing a meta-label space by using spectral clustering
for accounting label correlations. The second step uses the
l1-norm to learn label-specific features. LLSF Huang et al.
(2015) has learned the feature extraction method based on
label-specific features learning, but its label correlation is
pre-computed. LLSF can be regarded as a method of feature
space extraction. MLFC Zhang et al. (2018) jointly learns
label correlations and label-specific features, which consid-
ers that similar samples share similar label correlation-based
features concerning the label space,where additional features
represent the label correlations. LSML Huang et al. (2019)
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jointly learns the high-order label correlation and specific-
label features of a unified system to solve the problem of
missing labels in MLL. The method of this paper is the same
as LLSF and LSML in terms of learning label-specific fea-
tures, but LLSF considers label correlation by directly adding
prior knowledge, while LSML only explores the global label
correlation of label-specific features. The research on the
above-mentioned label-specific features learning found that
most of the existing methods ignore the problem of local
label structure.

2.2 Label correlations learning

On the aforementioned, there is equally the problemof global
and local LC in label-specific features learning. The local
smoothness of labels assumes that instances close to each
other usually share the same set of label subsets. MDFS
Zhang et al. (2019) performs low-dimensional embedding
of the original feature space to fit the natural label distribu-
tion and captures the local LC information. The motivation
for constructing global LC is to observe that the correlation
among labels is usually shared among instances Huang and
Zhou (2012). At present, some algorithms have constructed
global and local LC into a unified learning framework for
MLL. For example, inGLOCALZhu et al. (2017), global and
local label correlations are implemented to solve the full and
missing multi-label classification problems. GLMVML Zhu
et al. (2020) utilizes global and local label correlations of the
entire data set and each view at the same time when dealing
with multi-view and MLL problems. CLSF Che et al. (2020)
assigns labels with strong relationships to the corresponding
label group and computes local and global label correlations
simultaneously. According to the LC correlations theory, if
the labels of the instances are similar, then the spatial struc-
ture of the instances is likely that similar instances may share
some instance-related information, which is often reflected
in the local space among instances. Similarly, local label cor-
relations assume that the label correlations between different
instances are different, but instances with similar features
share their common label relationships.

The research, as mentioned above, has proved theoret-
ically or practically that the performance of multi-label
classifiers can be substantially improved by using global
and local LC. The existing methods of mining global and
local LC mainly use the entire feature representation data to
distinguish different labels. According to the label-specific
feature research, it can be found that this strategy may
obtain sub-optimal results. This paper proposes a multi-
label classification method that utilizes global and local
label correlation with label-specific features learning. First,
we design a linear optimization framework to model label-
specific feature learning problems through global and local
LC. In this framework, the label-specific feature weights

and LC weight coefficients are updated in alternating iter-
ations. We build the non-negligible difference relationship
between the original label set and the ground truth based
on label propagation dependence and explore the global and
local correlation structure of labels based on the feature-label
and sample-label manifold regularization. Secondly, these
optimization features can be utilized to distinguish the corre-
sponding label-specific features from other labels. Finally,
we utilize a linear model to predict the set of labels for
unknown instances. At the same time, the LSGL algorithm is
invoked as a feature extraction method combined with ELM
Huang et al. (2015), Huang (2014), Cheng et al. (2019) and
BSVM models. By analyzing experimental results and sta-
tistical hypothesis tests, we can draw intuitive conclusions
that LSGL has achieved a certain degree of competitiveness
compared to the state-of-the-art multi-label method on vari-
ous evaluation metrics.

3 The proposedmethod

3.1 Multi-label learning

Let X = [x1, x2, · · · , xn] ∈ R
n×d be the input instance

space of d-dimensional features, where n denotes the num-
ber of samples in the input space, xi ∈ R

d denotes the
feature vector corresponding to the i-th instances. Y =
[y1, y2, · · · , yn]T ∈ R

n×l denotes the label space matrix
corresponding to the instance space, where l denotes the
number of labels of the instance; yi ∈ {0, 1}i denotes the
corresponding label vector. Therefore, an MLL training data
set containing n instances can be defined as:

D = {xi ,Yi |1 ≤ i ≤ n} ⊂ R
d × {0, 1}i

3.2 Label-specific features learning

In general, regarding label-specific features, we assume that
a known instance space gives the own attributes of each class
label. In dealing with this problem, a linear model with l1-
norm regularization can generally be utilized for modeling
Huang et al. (2015). Nonzero entries for eachwi ∈ R

d can be
utilized to determine the specific characteristics of the label
and can also effectively distinguish the corresponding class
labels.

min
wi

1

2

∥
∥
∥Xwi − yi

∥
∥
∥

2

2
+ λ4

∥
∥
∥wi

∥
∥
∥
1

(1)

Further, the optimization problem can be rewritten as:

min
W

1

2
‖XW − Y‖2F + λ4‖W‖1 (2)
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where W = [

w1,w2, · · · ,wl
] ∈ R

d×l denotes the weight
parameter, and λ4 ≥ 0 denotes a penalty parameter. Intu-
itively, samples with similar labels have similar similarities
in their features. Assuming that there are highly similar label-
specific features, their corresponding class labels yi and y j
are also strongly correlated. Therefore, there is a similar-
ity between the corresponding label-specific feature model
parameters wi and w j . Otherwise, wi and w j are different.
This paper utilizes a common Euclidean distance metric to
measure the similarity between wi and w j . Then, the opti-
mization problem for Eq.2 can be rewritten as:

min
W ,S

1

2
‖XW − Y‖2F + λ2

2
Tr

(

SWTW
)

+ λ4‖W‖1
s.t. S ≥ 0 (3)

where S ∈ R
l×l denotes the label correlation matrix, Si j

denotes the degree of correlation between labels yi and y j .
Because the degree of correlation between labels is different
from each other, S is a matrix that is not strictly symmetric.
To avoid that the matrix S is not positive definite or semi-
positive definite, which adversely affects the second regular

term in Eq.3, we give S = S+ST
2 to solve this problem.

3.3 Global and Local label correlations learning

Inspired by the idea of label propagation dependence Fu et al.
(2013), Xu Xu et al. (2014) et al. consider that there is an
individual dependency among labels, and it is found that
Y×S can be utilized to complement the original labels space,
where S is a global label correlationmatrix. The original label
space information can be propagated. To ensure the addition
of related regular terms to the difference between the label
completion matrix and the original label matrix, Eq.3 can be
written as:

min
W ,S

1

2
‖XW − Y‖2F + λ1

2
‖Y S − Y‖2F

+λ2

2
Tr

(

SWTW
)

+ λ4‖W‖1
s.t. S ≥ 0 (4)

We assume that the LC matrix can enrich the original label
space information to improve the classification performance,
but to avoid the unreliable measurement of label correlation
affecting the effect of multi-label learning, the second term
in Eq.4 is defined to constrain the label correlation.

Further, based on the exploration of label correlation from
a global perspective, we consider the local structure informa-
tion of the label to ensure that the resulting label correlation
matrix is more robust than the “ground truth”. The smooth-
ness hypothesis is usually usedwhen exploring the local label
correlation. It is believed that the distance between any two

examples in the feature space can measure the similarity
of their corresponding class labels. Furthermore, it can be
expressed that if the initial label vectors yi and y j are very
similar in inherent geometric space, then the real labels Ŷ i

and Ŷ j should also have similar structural features Zhang
et al. (2019), Ren et al. (2017). The manifold regulariza-
tion term of the local smooth structure hypothesis can be
expressed as:

Ω (S) =
n

∑

i, j=1

∥
∥Y Si − Y S j

∥
∥2Ei, j

= Tr
(

(Y S)TLxY S
)

(5)

where Lx is the graph Laplacian matrix of E. E is the weight
matrix of the instance, used for the similarity between xi and
x j of the instance. E can be obtained as follows:

Ei j =
{

exp
(

−‖xi−x j‖
2σ 2

)

xi ∈ Nk
(

x j
)

or x j ∈Nk (xi )

0 otherwise

(6)

The LC matrix S preserves the local smoothness of the
sample. Note that the correlation among class labels may
only be related to a subset of the class label, so we add the l1-
norm regular item on S to learn the sparse label dependency;
then, the final optimization function is expressed as follows:

min
W ,S

1

2
‖XW − Y‖2F

+λ1

2
‖Y S − Y‖2F + λ2

2
Tr

(

SWTW
)

+λ3

2
Ω (S) + λ4‖W‖1 + λ5‖S‖1

s.t. S ≥ 0 (7)

4 Optimization

Equation7 is a convex optimization problem, but it is not
smooth due to the existence of the l1-norm regularization
term. In convex optimization problems, there are some cases
where the objective function is not differentiable. The gen-
eral solution is to solve the optimal solution by introducing
subgradients iteratively. However, the speed of the subgra-
dient method is slower than that of the gradient descent
method. For this reason, for some cases where the overall
non-differentiable but the non-smooth convex function can
be decomposed into differentiable and non-differentiable, the
approximationmodel can be utilized to optimize the solution.
This method of solving the non-smooth convex optimiza-
tion problem is named accelerated proximal gradient descent
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method (PGD)Combettes andWajs (2005). Specifically, two
model parameters (i.e.,W and S ) in Eq.7 are represented by
Φ. According to the representation of the convex optimiza-
tion problem in the general PGD algorithm, we abbreviate
Eq.7 as follows:

min
Φ∈H

{F (Φ) := f (Φ) + g (Φ)} (8)

where H is a real Hilbert space, f (·) is a convex differ-
entiable function, and g (·) is a convex non-differentiable
function. f (Φ) and g(Φ) are expressed as:

f (Φ) = 1

2
‖XW − Y‖2F + λ1

2
‖Y S − Y‖2F

+λ2

2
Tr

(

SWTW
)

+ λ3

2
Ω (S)

s.t. S ≥ 0 (9)

g(Φ) = λ4‖W‖1 + λ5‖S‖1 (10)

For any L > 0, we can perform a second-order approx-
imation to the function f (·). The second approximation of
F(Φ) := f (Φ) + g(Φ) is defined as follows:

QL
(

Φ,Φ t) = f (Φ) + 〈∇ f
(

Φ t
)

,Φ − Φ t
〉

+ 1
2

∥
∥Φ − Φ t

∥
∥2
F + g(Φ) (11)

For any L ≥ L f , where L f denotes the Lipschitz con-
stant, here it has QL

(

Φ,Φ t
) ≥ F(Φ). Afterward, the

PGD algorithmminimizes a sequence of separable quadratic
approximations to F(Φ). Finally, the solution of Φ can be
obtained by minimizing QL

(

Φ,Φ t
)

:

Φ∗ = argmin
Φ

g(Φ) + L

2

∥
∥Φ − Gt

∥
∥2
F (12)

where Gt =Φ t − 1
L ∇ f

(

Φ t
)

, Φ t =Φ t+ αt−1−1
αt

(Φ t−Φ t−1),

and Φ t = Φ t + αt−1−1
αt

(Φ t − Φ t−1) for a sequence αt by

satisfying α2
t−1 − αt+1 ≤ α2

t can improve the convergence

rate toO
(

1
t2

)

. HereΦ t is the result ofΦ at the t-th iteration.

The model coefficients W and S are unknown parameters
for the problem Eq.7, and they can be updated alternatively.
In this paper, one is fixed in each iteration of the two model
coefficients, and the other is updated.

4.1 Fix S updatingW

The gradient of the problem Eq.9 w.r.t W can be obtained
by:

∇ f (W) = ∂ fW (Φ)

∂W
= XTXW − XTY + λ2WS (13)

According to Eq.12, W can be computed as:

W t = W t + αt−1 − 1

αt
(W t − W t−1) (14)

W t+1 = proxε

(

W t − 1

L
∇ f

(

W t)
)

(15)

where ↑ denotes the step size. The function g(Φ)with respect
toW corresponds to the l1-norm, which can be solved by the
element-wise soft-threshold operator defined as:

proxε

(

W i j
) = (∣

∣W i j
∣
∣ − ε

)

+ sign
(

W i j
)

(16)

where (·)+ = max(·, 0).

4.2 FixW updating S

The gradient of the problem Eq.9 w.r.t S can be obtained by:

∇ f (S) = ∂ fS (Φ)

∂S
= λ1

(

YTY S − YTY
)

+λ2

2
WTW + λ3YTLxY S (17)

We utilize the parameter λ1 > 0 to control the loss between
the label completion matrix and the original label matrix and
Lx ∈ R

n×n is the graph Laplacian matrix of the coder labels
matrix E (E is utilized to calculate the similarity between
instances). In the accelerated PGDmethod, S can be updated
by:

St = St + αt−1 − 1

αt
(St − St−1) (18)

St+1 = proxε

(

St − 1

L
∇ f

(

St
)
)

(19)

The function g(Φ) with regard to S corresponds to the l1-
normwith the qualifiednon-negative constraint,which canbe
solved by the element-wise soft-threshold operator defined
as:

proxε

(

Si j
) = (∣

∣Si j
∣
∣ − ε

)

+ sign
(

Si j
)

(20)

where (·)+ = max(·, 0).
In order to prove the Lipschit z continuity of Eq.7, given

Φ1 = (W1, S1), and Φ2 = (W2, S2). According to Eq.13,
Eq.17, and the Frobenius norm inequality, the following
reasoning can be obtained:

‖∇ f (Φ1) − ∇ f (Φ2)‖2F
=

∥
∥
∥XTXΔW + λ2ΔWS + λ1YTYΔS

+λ3YTLxYΔS
∥
∥
∥

2

F
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≤ 2
∥
∥
∥XTX

∥
∥
∥

2

2
‖ΔW‖2F + 2 ‖ΔW‖2F ‖λ2S‖22

+2
∥
∥
∥λ1YTY

∥
∥
∥

2

2
‖ΔS‖2F + 2

∥
∥
∥λ3YTLxY

∥
∥
∥

2

2
‖ΔS‖2F

(21)

where ∇ f (Φ1) = ∇ f (W1) + ∇ f (S1), ∇ f (Φ2)

= ∇ f (W2) + ∇ f (S2), ΔW = W1 − W2, and ΔS =
S1 − S2.

Then, the Lipschit z constant L f is expressed as:

L f = √
2 (A + B);

A= ∥
∥XTX

∥
∥
2
2 + ∥

∥λ1YTY
∥
∥
2
2 ;

B = ‖λ2S‖22 + ∥
∥λ3Y T LxY

∥
∥
2
2

(22)

In summary, we introduce a linear model to generate the
predicted labels vector Y t :

Y t= sign (P t − η) (23)

where P t = X tW∗, η is the given threshold set to be 0.5.

Algorithm1Label-Specific features learning viaGlobal and
Local label correlations(LSGL).
Require:

The training data set: X ∈ R
n×d ;

The label data set: Y ∈ R
n×l ;

The non-negative trade-off parameters: λ1,λ2,λ3,λ4,λ5;
Instance similarity matrix: Lx ;

Ensure:
Model parameters: W∗ and S∗;

1: Initialization: W0, W1 = rand (n, l); S0, S1 = zeros (n, l); α0,
α1 = 1; t = 1.

2: repeat
3: W t = W t + αt−1−1

αt
(W t − W t−1);

4: Gt
w = W t − 1

L f
∇W f

(

W t
)

;

5: W t+1 = prox λ4
L f

(

Gt
w

)

by Eq.15;

6: St = St + αt−1−1
αt

(St − St−1);

7: Gt
s = St − 1

L f
∇S f

(

St
)

;

8: St+1 = prox λ5
L f

(

Gt
s
)

by Eq.19;

9: St+1 = St ;
10: Compute LC matrix S by S = S+ST

2 ;

11: αt+1 = 1+
√

4α2
t +1

2 ;
12: t = t + 1;
13: until convergence
14: return W∗ = W t ;S∗ = St .

4.3 Complexity analysis

In this section, wemainly analyze the complexity of the opti-
mization parts listed in Algorithm 1. In the LSGL algorithm,
X ∈ R

n×d , Y ∈ (0, 1)n×l , S ∈ R
l×l , and W ∈ R

d×l , where

n denotes the number of samples, d denotes the dimension
of the sample, and l denotes the number of class labels. In
Algorithm 1, most time-consuming mainly consists of three
parts. Firstly, we calculate the value of functions F (fl) and
QL (fl). Secondly, the gradient of f (fl)w.r.tW should be cal-
culated. Thirdly, we need to calculate the gradient of f (fl)

w.r.t S. In summary, the total time complexity of LSGL is
O (

d
(

d2 + nl + l2
) + l

(

l2 + d2
) + n

(

d2 + l2
))

.

5 Evaluation and discussion

5.1 Datasets

To verify the effectiveness of our proposed LSGL algorithm,
we performed experiments on 15 benchmarkmulti-label data
sets, which can be downloaded fromMulan Tsoumakas et al.
(2011)1 andHuiskes and Lew (2008)2. The details of the data
sets are summarized in Table 1.

5.2 Evaluationmetrics

In this section, five common evaluation metrics were utilized
for evaluation. Let Dt = {X i ,Y i |i = 1, 2, · · · , p} denotes
the test data set, where Y i ∈ Y denotes a set of true label vec-
tors corresponding to the i-th instance, and h (X i ) denotes a
function of a set of predicted label vectors of the i-th instance.
f (X i ,Y i ) indicates the confidence score that X i belongs to
label Y i . The rank f (xi , y) return the rank of y derived from
f (X i ,Y i ). The performance of the MLL algorithm can be
objectively evaluated data through the five evaluationmetrics
Huang et al. (2019): average precision (AP), coverage (CV),
Hamming loss (HL), one error (OE), and ranking loss (RL).
The detailed formulation definitions of the five evaluation
metrics (Huang et al. 2016, 2019; Beck and Teboulle 2009)
are as follows:

– AP: Evaluate the average score of the correct labels for a
particular label y ∈ Y i permutation.

Average precision = 1
p

p∑

i=1

1
|Yi |

∑

y∈Yi
×

|{y′|rank f (Xi ,y′)≤rank f (Xi ,y′),y′∈Yi }|
rank f (Xi ,y)

– CV: Measures how many steps the average takes to tra-
verse all relevant labels on the samples.

Coverage = 1

nt

nt∑

i=1

max
yi∈Yi

rank f (xi , y) − 1

1 data sets: http://mulan.sourceforge.net/datasets-mlc.html.
2 data sets: http://lear.inrialpes.fr/people/guillaumin/data.php.
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Table 1 Multi-label data sets Data set Instance Features Labels Cardinality Density Domain

Arts 5000 462 26 1.636 0.063 Text

Birds 645 258 19 1.014 0.053 Audio

Cal500 502 68 174 26.044 0.150 Music

Computers 5000 681 33 1.461 0.044 Text

Emotion 593 72 6 1.869 0.311 Music

Enron 1702 1001 53 3.378 0.064 Text

Flags 194 9 7 3.392 0.482 Images

Genbase 662 1186 27 1.252 0.046 Biology

Medical 978 1449 45 1.245 0.028 Text

Science 5000 743 40 1.451 0.036 Text

Social 5000 1047 39 1.283 0.033 Text

Yeast 2417 103 14 4.237 0.303 Music

Corel5k 5000 499 374 3.522 0.009 Images

Mirflickr 2780 1536 14 1.000 0.071 Images

Tmc2007 28596 500 22 2.220 0.101 Text

– HL: Measures the mismatch between the true and pre-
dicted labels of samples on a single label.

Hamming loss = 1

nt

nt∑

i=1

1

l
|h (X i ) �= Yi |

– OE: Consider the case where the predicted value is top-
ranked but not affiliated with the samples.

One Error = 1

m

m
∑

i=1

[

Yi,li = −1
]

where li = argmax
k /∈{1,··· ,Yi }

fk (xi , y).

– RL: Consider the case where the rank of the irrelevant
labels is lower than the rank of the relevant labels.

Ranking Loss = 1

nt

nt∑

i=1

1

|Y i |
∣
∣
∣Ŷ i

∣
∣
∣

|
r |

where


r = {(

y′, y′′) | f (

Xi , y
′)

≤ f
(

Xi , y
′′) ,

(

y′, y′′) ∈ Y i × Y i
}

.

5.3 Comparing algorithms

In this section, we compare our proposed method, LSGL,
with the following state-of-the-art MLL methods. LSGL is
a label-specific features learning method for MLL. Features
learned by the LSGL algorithm can be combined with other
classifiers, such as BSVM and ELM.

1. ML-kNN3 Zhang and Zhou (2007): A lazy MLL
approach is based on the classic k-nearest neighbor method.
The nearest-neighbor k of ML-kNN is set to 10, and the
smoothing parameter s is set to 1.

2. LIFT4 Zhang and Lei (2014): It explores the specific
features of different labels by k-means clustering of positive
and negative instances. The clustering ratio r is set to 0.2.

3. LLSF5 Huang et al. (2015): This is a MLL algorithm
that learns label-specific features by adding prior knowledge
about label correlations. The regularization parameters α and
β are tuned in

{

2−10, 2−9, · · · , 210
}

.
4. Glocal6 Zhu et al. (2017): This is an MLL algorithm

with global and local label correlation, which can handle
both full and missing labels. Parameter λ is set to 1, and
the basic values of other parameters are selected by fivefold
cross-validation on the training set.

5. LSGL7: This is a MLL algorithm that jointly learns
label-specific features and global and local label correlations.
Trade-off parameters λ1 are searched in

{

10−3, 10−2, · · · ,

103
}

, λ2, λ3, λ4, and λ5 are searched in
{

10−3, 10−2, · · · ,

10−1
}

.
6. LSGL-BSVM: LSGL is utilized as a feature selec-

tion method. The label-specific feature of the label yi is
the feature corresponding to the nonzero element in each
W i (1 ≤ i ≤ l). Train the label-specific features of each
binary classifier through BSVM. Trade-off parameters λ1 to
λ5 are set to be the same as LSGL.

3 code: https://cs.nju.edu.cn/zhouzh/.
4 code: http://palm.seu.edu.cn/zhangml/.
5 code: http://www.escience.cn/people/huangjun/index.html.
6 code: http://www.lamda.nju.edu.cn.
7 code: https://github.com/zhaodwahu/LSGL.
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10 7. LSGL-ELM: In addition, we utilize LSGL as a label-

specific feature extraction method and then explore an
extreme learning machine (ELM)model for multi-label clas-
sification. This method is typically different from other
label-specific feature extraction methods. We utilize lin-
ear models for classification and consider neural network
learning methods, which can be used to verify further the
effectiveness of the LSGL algorithm in label-specific fea-
ture extraction. Parameters λ1 to λ5 are set to be the same as
LSGL. The kernel function type selection RBF kernel, and
the kernel parameter and the parameter C are set to 1.

LIBSVM Chang and Lin (2011) is utilized as the base
binary learner for BSVM, LIFT, and LSGL-BSVM, where
the kernel function is configured as a linear kernel, and the
parameter C as 1.

5.4 Experimental results

The experiments are implemented using MATLAB 2016a
on a standard Windows PC with an Intel 4.2-GHz CPU and
16-GBRAM. For each data set, the performancewas system-
atically evaluated using tenfold cross-validation. In detail,
ten repeated experiments were performed, and the average
result (mean±standard deviation) of each comparison algo-
rithm was recorded. At the beginning of each experiment,
we randomly selected 90% of the instances for training and
the remaining 10% for tests. The results of ten independent
replicate experiments are reported in Table 2 to Table 6. It
should be noted that the “↑” indication after the evaluation
index indicates that the larger the value, the better the clas-
sification performance, and the “↓” indication indicates that
the smaller the value of the evaluation index, the better the
classification performance. In addition, the best results of the
comparison algorithms are shown in bold.

The experimental results of the five evaluation metrics on
the 15 data sets are listed in Tables 2, 3, 4, 5, 6, and we can
conclude as follows:

(a). The experimental comparison results of theAPof each
algorithm are given in Table 2. It can be seen that LSGL-
ELM achieves better performance than all the compared
algorithms. As shown in Table 3, LSGL-BSVM achieves
better performance than all the compared algorithms. From
Table 4 and Table 5, we can see that LSGL-ELM obtains
excellent performance on HL and OE, which is better than
LLSF, LIFT, GLOCAL, LSGL, and LSGL-BSVM. How-
ever, from Table 6, in the case of RL, we can see that LSGL
achieves better performance comparedwith other algorithms.

(b). We further observe that the performance of LSGL
is better than or roughly equivalent to LSGL-BSVM and
LSGL-ELM on the data sets yeast , genbase, and birds.
We can obtain the conclusion that the LSGL algorithm and
the LSGL-BSVM algorithm have the same performance.
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Table 7 Summary of the Friedman statistics FF (k=7, N=15) and the
critical value in terms of each evaluation metric

Metric FF Critical value(α = 0.05)

Average precision 33.0651 2.2086

Coverage 6.0728

Hamming loss 19.3019

One error 33.7531

Ranking loss 9.7736

(c). LSGL-ELM and LSGL-BSVM are extensions of the
LSGL algorithm, utilizing label-specific features for MLL.
However, LSGL-ELM achieves better performance than
LSGL-BSVM in terms of the three evaluation metrics except
for CV and RL. LSGL-BSVM utilizes BSVM as a binary
classifier. TheBSVMwouldnot directly performMLL,while
ELM can directly performMLL. From the results, the multi-
label classification effect of the ELM algorithm is somewhat
better than BSVM.

Furthermore, a statistical hypothesis test was utilized to
verify and compare the relative performance of various algo-
rithms. The Friedman test Zhang et al. (2018) was utilized
for performance analysis. Table 7 summarizes the Fried-
man statistics FF and the corresponding critical values of
the various evaluation metrics. As shown in Table 7, at the
significance level α=0.05, each evaluation metric is rejected
when the null hypothesis is that all comparison algorithms are
equivalently executed. Therefore, the Nemenyi test (He et al.
2019; Zhang and Lei 2014; Demšar 2006) is utilized as a post
hoc test to compare the performance of each algorithm and

observe whether the LSGL algorithm is competitive. There
is a significant difference in performance between the two
classifiers if the corresponding average ranking reaches at
least a critical difference (CD):

CD = qα

√

k(k + 1)

6N

For Nemenyi test, qα=2.948 at significance level α=0.05,
and thus, CD=2.3254(k=7, N=15). Figure 1 indicates the CD
diagrams of each algorithm under different evaluation met-
rics, respectively. In each subfigure, two or more algorithms
are connected by colored solid lines indicating that there is
no significant difference in performance between them. Oth-
erwise, any algorithms that are not connected by a solid line
is considered to have a significant difference in performance.
For each approach, there are 30 comparative results (six par-
allel approaches and five evaluation metrics). Through the
above experimental results, we can all obtain the following
analytical results:

– Intuitively, if there is a colored solid line connection
among the comparison algorithms and the LSGL-ELM
algorithm, itmeans that there is no statistically significant
difference between the LSGL-ELM algorithm and other
comparison algorithms. Specifically, it can be observed
from Fig. 1(a) that there is no significant difference in
AP among the LSGL-ELM, LSGL, and LSGL-BSM; as
shown in Fig.1(b), there is no significant difference in the
CV term among the LSGL-ELM, LSGL, LSGL-BSVM,
and LIFT; as shown in Fig.1(c), there is no significant

Fig. 1 Performance comparison
of various algorithms

(a)

(c)

(b)

(d)

(e)
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Fig. 2 Parameter sensitivity
analysis of LSGL on Arts data
set
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difference among the LSGL-ELM,LSGL, LSGL-BSVM
and LIFT algorithms on the HL term. From Fig.1(d), it
can be observed that there is no significant difference
among the LSGL-ELM, LSGL, and LSGL-BSVM algo-
rithms on the OE term; as shown in Fig.1(e), there is no
significant difference amongLSGL-ELM,LSGL,LSGL-
BSVM, and LIFT on the RL term. Based on the above
analysis, in 50% of cases, the LSGL-ELM algorithm is
significantly better than other comparison algorithms. In
Fig.1(b) and (e), it is noted that the LSGL-BSVM algo-
rithm obtains the optimal ranking under the coverage and
ranking loss.

– From the comparative analysis of the experimental results
of LSGL-BSVM and LIFT, we can note that: although
both utilize BSVM as a classifier when exploring the
label-specific feature learning, the observable perfor-
mance of LSGL-BSM is better. A reliable understanding

is that LIFT ignores the improvement of algorithm per-
formance caused by LC. On the classifier, the solution
process of ELM is faster than BSVM.

– From the comparative analysis of LSGLandLLSF exper-
imental consequences, we can see that both add label
correlation to learn label-specific features under a uni-
fied model, but the performance of LLSF is worse than
LSGL. The main reason is that LLSF adds label corre-
lation as a prior knowledge to the model, and LSGL is
a method to learn global and local LC and label-specific
features jointly.

– In comparison between GLOCAL and LSGL, it can be
found that LSGL performs better than GLOCAL. The
intuitive reason is that GLOCAL uses a linear combina-
tion of multiple-label manifold regularizes in the local
LC and is not obtained by direct iterative learning. And
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Fig. 3 Parameter sensitivity
analysis of LSGL algorithm on
Cal500 data set
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Fig. 4 Convergence trend
analysis
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107 Cal500

LSGL avoids such problems, and it makes full use of the
complex asymmetric relationship among labels.

– From the comparative analysis of the three approaches
such as LSGL, LSGL-ELM, and LSGL-BSVM, we can

see that the results of LSGL-ELM are significantly better
than the other two approaches. Intuitive analysis shows
that it is because the neural network-based classification
algorithm has nonlinear data processing capabilities.

123



2238 D. Zhao et al.

The comparative analysis of the performance of LSGL,
LLSF, and GLOCAL further verifies the effectiveness of
LSGL to learn label-specific features for global and local
LC through manifold regularization. It also further supports
the correctness of our hypothesis of global label consistency
and local label smoothness.

5.5 Parameter sensitivity analysis

In the LSGL algorithm, there are five important parameters
λ1, λ2, λ3, λ4, and λ5. λ1 controls the influence of LC on
the prediction effect of the model. The larger the value, the
smaller the impact of LC, and vice versa. λ2 controls the
similarity between models’ weight coefficients for every two
labels, λ3 controls the local label smoothness term, λ4 con-
trols label-specific feature sparsity between any two class
labels, and λ5 controls the sparsity of global and local label
correlations between different class labels. We use the Arts
and Cal500, to analyze the effect of parameters λ1, λ2, λ3,
λ4, and λ5 on the proposed method. The value of one of the
parameters changes within a certain range, while the value
of the other parameters is fixed to a certain value, respec-
tively, and then observing and recording the changes in the
experimental results.

The evaluation metrics were analyzed by average preci-
sion, coverage, Hamming loss, one error, and ranking loss for
parameter sensitivity experiments, and the average results of
LSGL with different values are depicted in Figs.2 and 3.

From Figs.2 and 3, we can find that when the value of λ4
is too large, the performance of LSGL is poor. Because λ4
controls the sparseness of the label-specific features, when
the value of λ4 is too large, the algorithm cannot effectively
obtain the distinctive features of the label. In addition, λ5
controls the sparseness of global and local label correlations
between class labels. Some functional label correlations are
filtered out because of a larger λ5 value, so the parameter λ5
should not be set too large. Regarding the changes in other
parameters, it can be noticed that it is not sensitive to the per-
formance of LSGL. In most cases, the highest performance
is obtained when all parameters have a value of 10−1.

5.6 LSGL algorithm iteration efficiency

In this section, we show the iterative convergence of the
LSGL algorithm. Specifically, the convergence curves of
LSGL on the Arts and Cal500 data sets are shown in Fig.4.
We can see that for the Arts dataset, LSGL tends to con-
verge 15 iterations, and for the Cal500 dataset, LSGL tends
to converge 20 times. The convergence trends on other data
sets are the same as the trends reported in Fig.4. Overall, for
the datasets used in the experiments, LSGL can converge at
a faster rate.

6 Conclusion

In this article, we propose an MLL method called LSGL.
Based on the assumption of global label consistency and
local label smoothness, LSGL conducts joint learning of
global and local label correlation and label-specific features.
In addition, we extract label-specific features through the
nonzero entries of the coefficient matrix and then combine
the feedforward neural network learning method ELM and
the SVMmethod BSVM for multi-label classification. Com-
paredwith the state-of-the-artMLLmethodon15benchmark
multi-label data sets, it verifies the effectiveness and robust-
ness of LSGL using global and local label correlation for
label-specific feature learning.

The shortcomings of ourmethod are also prominent. First,
there are two variables in LSGL that needs to be optimized
through alternate iterations, which are likely to fall into the
optimal local solution. Secondly, LSGL is a typical linear
optimizationproblem, so it cannot solvewhere data are insep-
arable. In future work, we will focus on solving the above
problems.
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